Skip to content

Latest commit

 

History

History
executable file
·
158 lines (121 loc) · 8.93 KB

README_CN.md

File metadata and controls

executable file
·
158 lines (121 loc) · 8.93 KB

(简体中文|English)




Build Status Docs Release Python License Forks Issues Contributors Community


Paddle Serving依托深度学习框架PaddlePaddle旨在帮助深度学习开发者和企业提供高性能、灵活易用的工业级在线推理服务。Paddle Serving支持RESTful、gRPC、bRPC等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案,和多种经典预训练模型示例。核心特性如下:

  • 集成高性能服务端推理引擎paddle Inference和移动端引擎paddle Lite,其他机器学习平台(Caffe/TensorFlow/ONNX/PyTorch)可通过x2paddle工具迁移模型
  • 具有高性能C++和高易用Python 2套框架。C++框架基于高性能bRPC网络框架打造高吞吐、低延迟的推理服务,性能领先竞品。Python框架基于gRPC/gRPC-Gateway网络框架和Python语言构建高易用、高吞吐推理服务框架。技术选型参考技术选型
  • 支持HTTP、gRPC、bRPC等多种协议;提供C++、Python、Java语言SDK
  • 设计并实现基于有向无环图(DAG)的异步流水线高性能推理框架,具有多模型组合、异步调度、并发推理、动态批量、多卡多流推理、请求缓存等特性
  • 适配x86(Intel) CPU、ARM CPU、Nvidia GPU、昆仑XPU、华为昇腾310/910、海光DCU、Nvidia Jetson等多种硬件
  • 集成Intel MKLDNN、Nvidia TensorRT加速库,以及低精度和量化推理
  • 提供一套模型安全部署解决方案,包括加密模型部署、鉴权校验、HTTPs安全网关,并在实际项目中应用
  • 支持云端部署,提供百度云智能云kubernetes集群部署Paddle Serving案例
  • 提供丰富的经典模型部署示例,如PaddleOCR、PaddleClas、PaddleDetection、PaddleSeg、PaddleNLP、PaddleRec等套件,共计40+个预训练精品模型
  • 支持大规模稀疏参数索引模型分布式部署,具有多表、多分片、多副本、本地高频cache等特性、可单机或云端部署
  • 支持服务监控,提供基于普罗米修斯的性能数据统计及端口访问

教程

文档

部署

此章节引导您完成安装和部署步骤,强烈推荐使用Docker部署Paddle Serving,如您不使用docker,省略docker相关步骤。在云服务器上可以使用Kubernetes部署Paddle Serving。在异构硬件如ARM CPU、昆仑XPU上编译或使用Paddle Serving可阅读以下文档。每天编译生成develop分支的最新开发包供开发者使用。

使用

安装Paddle Serving后,使用快速开始将引导您运行Serving。第一步,调用模型保存接口,生成模型参数配置文件(.prototxt)用以在客户端和服务端使用;第二步,阅读配置和启动参数并启动服务;第三步,根据API和您的使用场景,基于SDK编写客户端请求,并测试推理服务。您想了解跟多特性的使用场景和方法,请详细阅读以下文档。

开发者

为Paddle Serving开发者,提供自定义OP,变长数据处理。

模型库

Paddle Serving与Paddle模型套件紧密配合,实现大量服务化部署,包括图像分类、物体检测、语言文本识别、中文词性、情感分析、内容推荐等多种类型示例,以及Paddle全链条项目,共计45个模型。

PaddleOCR PaddleDetection PaddleClas PaddleSeg PaddleRec Paddle NLP
8 12 14 2 3 6

更多模型示例进入模型库

社区

您想要同开发者和其他用户沟通吗?欢迎加入我们,通过如下方式加入社群

微信

  • 微信用户请扫码

QQ

  • 飞桨推理部署交流群(Group No.:697765514)

贡献代码

如果您想为Paddle Serving贡献代码,请参考 Contribution Guidelines(English)

  • 感谢 @loveululu 提供 Cube python API
  • 感谢 @EtachGu 更新 docker 使用命令
  • 感谢 @BeyondYourself 提供grpc教程,更新FAQ教程,整理文件目录。
  • 感谢 @mcl-stone 提供faster rcnn benchmark脚本
  • 感谢 @cg82616424 提供unet benchmark脚本和修改部分注释错误
  • 感谢 @cuicheng01 提供PaddleClas的11个模型
  • 感谢 @Jiaqi Liu 新增list[str]类型输入的预测支持
  • 感谢 @Bin Lu 提供PP-Shitu C++模型示例

反馈

如有任何反馈或是bug,请在 GitHub Issue提交

License

Apache 2.0 License