Skip to content

Latest commit

 

History

History
234 lines (191 loc) · 6.21 KB

Inference_Protocols_CN.md

File metadata and controls

234 lines (191 loc) · 6.21 KB

Inference Protocols

C++ Serving基于BRPC进行服务构建,支持BRPC、GRPC、RESTful请求。请求数据为protobuf格式,详见core/general-server/proto/general_model_service.proto。本文介绍构建请求以及解析结果的方法。

Tensor

Tensor可以装载多种类型的数据,是Request和Response的基础单元。Tensor的具体定义如下:

message Tensor {
  // VarType: INT64
  repeated int64 int64_data = 1;

  // VarType: FP32
  repeated float float_data = 2;

  // VarType: INT32
  repeated int32 int_data = 3;

  // VarType: FP64
  repeated double float64_data = 4;

  // VarType: UINT32
  repeated uint32 uint32_data = 5;

  // VarType: BOOL
  repeated bool bool_data = 6;

  // (No support)VarType: COMPLEX64, 2x represents the real part, 2x+1
  // represents the imaginary part
  repeated float complex64_data = 7;

  // (No support)VarType: COMPLEX128, 2x represents the real part, 2x+1
  // represents the imaginary part
  repeated double complex128_data = 8;

  // VarType: STRING
  repeated string data = 9;

  // Element types:
  //   0 => INT64
  //   1 => FP32
  //   2 => INT32
  //   3 => FP64
  //   4 => INT16
  //   5 => FP16
  //   6 => BF16
  //   7 => UINT8
  //   8 => INT8
  //   9 => BOOL
  //  10 => COMPLEX64
  //  11 => COMPLEX128
  //  20 => STRING
  int32 elem_type = 10;

  // Shape of the tensor, including batch dimensions.
  repeated int32 shape = 11;

  // Level of data(LOD), support variable length data, only for fetch tensor
  // currently.
  repeated int32 lod = 12;

  // Correspond to the variable 'name' in the model description prototxt.
  string name = 13;

  // Correspond to the variable 'alias_name' in the model description prototxt.
  string alias_name = 14; // get from the Model prototxt

  // VarType: FP16, INT16, INT8, BF16, UINT8
  bytes tensor_content = 15;
};
  • elem_type:数据类型,当前支持FLOAT32, INT64, INT32, UINT8, INT8, FLOAT16
elem_type 类型
0 INT64
1 FLOAT32
2 INT32
3 FP64
4 INT16
5 FP16
6 BF16
7 UINT8
8 INT8
  • shape:数据维度
  • lod:lod信息,LoD(Level-of-Detail) Tensor是Paddle的高级特性,是对Tensor的一种扩充,用于支持更自由的数据输入。详见LOD
  • name/alias_name: 名称及别名,与模型配置对应

构建FLOAT32数据Tensor

// 原始数据
std::vector<float> float_data;
Tensor *tensor = new Tensor;
// 设置维度,可以设置多维
for (uint32_t j = 0; j < float_shape.size(); ++j) {
  tensor->add_shape(float_shape[j]);
}
// 设置LOD信息
for (uint32_t j = 0; j < float_lod.size(); ++j) {
  tensor->add_lod(float_lod[j]);
}
// 设置类型、名称及别名
tensor->set_elem_type(1);
tensor->set_name(name);
tensor->set_alias_name(alias_name);
// 拷贝数据
int total_number = float_data.size();
tensor->mutable_float_data()->Resize(total_number, 0);
memcpy(tensor->mutable_float_data()->mutable_data(), float_datadata(), total_number * sizeof(float));

构建INT8数据Tensor

// 原始数据
std::string string_data;
Tensor *tensor = new Tensor;
for (uint32_t j = 0; j < string_shape.size(); ++j) {
  tensor->add_shape(string_shape[j]);
}
for (uint32_t j = 0; j < string_lod.size(); ++j) {
  tensor->add_lod(string_lod[j]);
}
tensor->set_elem_type(8);
tensor->set_name(name);
tensor->set_alias_name(alias_name);
tensor->set_tensor_content(string_data);

Request

Request为客户端需要发送的请求数据,其以Tensor为基础数据单元,并包含了额外的请求信息。定义如下:

message Request {
  repeated Tensor tensor = 1;
  repeated string fetch_var_names = 2;
  bool profile_server = 3;
  uint64 log_id = 4;
};
  • fetch_vat_names: 需要获取的输出数据名称,在GeneralResponseOP会根据该列表进行过滤.请参考模型文件serving_client_conf.prototxt中的fetch_var字段下的alias_name
  • profile_server: 调试参数,打开时会输出性能信息
  • log_id: 请求ID

构建Request

当使用BRPC或GRPC进行请求时,使用protobuf形式数据,构建方式如下:

Request req;
req.set_log_id(log_id);
for (auto &name : fetch_name) {
  req.add_fetch_var_names(name);
}
// 添加Tensor
Tensor *tensor = req.add_tensor();
...

当使用RESTful请求时,可以使用JSON形式数据,具体格式如下:

{"tensor":[{"float_data":[0.0137,-0.1136,0.2553,-0.0692,0.0582,-0.0727,-0.1583,-0.0584,0.6283,0.4919,0.1856,0.0795,-0.0332],"elem_type":1,"name":"x","alias_name":"x","shape":[1,13]}],"fetch_var_names":["price"],"log_id":0}

Response

Response为服务端返回给客户端的结果,包含了Tensor数据、错误码、错误信息等。定义如下:

message Response {
  repeated ModelOutput outputs = 1;
  repeated int64 profile_time = 2;
  // Error code
  int32 err_no = 3;

  // Error messages
  string err_msg = 4;
};

message ModelOutput {
  repeated Tensor tensor = 1;
  string engine_name = 2;
}
  • profile_time:当设置request->set_profile_server(true)时,会返回性能信息
  • err_no:错误码,详见core/predictor/common/constant.h
  • err_msg:错误信息,详见core/predictor/common/constant.h
  • engine_name:输出节点名称
err_no err_msg
0 OK
-5000 "Paddle Serving Framework Internal Error."
-5001 "Paddle Serving Memory Alloc Error."
-5002 "Paddle Serving Array Overflow Error."
-5100 "Paddle Serving Op Inference Error."

读取Response数据

uint32_t model_num = res.outputs_size();
for (uint32_t m_idx = 0; m_idx < model_num; ++m_idx) {
  std::string engine_name = output.engine_name();
  int idx = 0;
  // 读取tensor维度
  int shape_size = output.tensor(idx).shape_size();
  for (int i = 0; i < shape_size; ++i) {
    shape[i] = output.tensor(idx).shape(i);
  }
  // 读取LOD信息
  int lod_size = output.tensor(idx).lod_size();
  if (lod_size > 0) {
    lod.resize(lod_size);
    for (int i = 0; i < lod_size; ++i) {
      lod[i] = output.tensor(idx).lod(i);
    }
  }
  // 读取float数据
  int size = output.tensor(idx).float_data_size();
  float_data = std::vector<float>(
      output.tensor(idx).float_data().begin(),
      output.tensor(idx).float_data().begin() + size);
  // 读取int8数据
  string_data = output.tensor(idx).tensor_content();
}