Skip to content

Validating and Serializing JSON data into Python object with minimal effort.

License

Notifications You must be signed in to change notification settings

junpuf/serial-j

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

45 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

https://github.com/JunpuFan/serial-j

Features

  1. Serialize JSON / Python Dictionary data into Python object based on a compact data schema.
    1. Data schema is a python list [] of many {}.
    2. Each {} in the schema defines a property in your JSON data.
    3. The easiest form of a property definition is {'name':'my_property'} which means:
      1. Your JSON data MUST contain a property called my_property .
      2. Its value MUST be a non-empty value.
      3. Non-empty means that the value of my_property can not be None, "", (), [], or {}.
    4. Additional options are available to give you more control over your data definition. Those options are: nullable, optional, is_compound, compound_serializer, compound_schema and type.
      1. Option nullable: True means the value of my_property can be None.
      2. Option optional: True means my_property may or may not exist in your JSON data.
        1. In case my_property exist, verify all applicable options.
        2. In case my_property doesn't exist, we ignore my_property.
      3. Option is_compound: True means my_property is a nested JSON object or an Array of JSON objects.
        1. When is_compound: True, you must provide either compound_serializer or compound_schema so we can property serialize this nested data structure.
          1. compound_serializer is a SerialJ serializer class.
          2. compound_schema has the same structure as the data schema.
      4. Option type gives you the power to validate the value of each property in your JSON data. Currently supported type definitions are:
        1. 'type': (bool,) a boolean value.
        2. 'type': (float,) a floating point number.
        3. 'type': (int,) an integer.
        4. 'type': (int, (1, 64, 343)) an enumeration of integers, this means that the value of a JSON property should be in (1, 64, 343).
        5. 'type': (int, range(1, 10, 3), a range of integers, this means that the value of a JSON property should be in range(1, 10, 3).
        6. 'type': (int, lambda x: x % 2 == 0) a user defined lambda expression used to filter desired integer values, the above example lambda specifies the value of the JSON property should be a even number.
        7. 'type': (str,) a string value.
        8. 'type': (str, ('SUCCESS', 'FAILURE')) an enumeration of strings, this means that the value of a JSON property should be in ('SUCCESS', 'FAILURE'). Note that ('SUCCESS', 'FAILURE') is just an example here, you can define anything you like.
        9. 'type': (str, 'email') an email address.
        10. 'type': (str, 'url') a web url.
        11. 'type': (str, 'ipv4') an IPv4 address.
        12. 'type': (str, 'ipv6') an IPv6 address.
        13. 'type': (str, 'uuid') an UUID string.
        14. 'type': (str, '[^@]+@[^@]+\.[^@]+') a user defined regex.
  2. Automatically validate every JSON properties defined in the schema based on varies additional options specified in schema.
  3. You are given convenient built-in methods that you can use to convert your data back to JSON encoded string or JSON / Python Dictionary.
  4. You have the flexibility of defining additional methods in your serializer class that utilize your data in anyway you want.

Example Codes

Name Code
Basic Example basic_ex.py
Serialize Nested Json Data with compound_schema nested_ex2.py
Serialize Nested Json Data with compound_serializer nested_ex1.py
Data Type Validation: all in one example typed_ex.py
Data Type Validation: bool bool_data.py
Data Type Validation: float float_data.py
Data Type Validation: int int_data.py
Data Type Validation: int enum int_enum_data.py
Data Type Validation: int range int_ranged_data.py
Data Type Validation: int lambda int_lambda_data.py
Data Type Validation: str str_data.py
Data Type Validation: str enum str_enum_data.py
Data Type Validation: str email str_email_data.py
Data Type Validation: str url str_url_data.py
Data Type Validation: str uuid str_uuid_data.py
Data Type Validation: str ipv4 str_ipv4_data.py
Data Type Validation: str ipv6 str_ipv6_data.py
Data Type Validation: str regex str_regex_data.py

Basic Example

Let's first see a basic example.

from serial_j import SerialJ

class FruitBucket(SerialJ):
    # define how our data should look like using `schema`.
    schema = [
        {'name': 'apple'},
        {'name': 'orange'},
        {'name': 'pineapple'},
    ]

# test data for FruitBucket 
test1 = dict(
    apple="good apple",
    orange="very good orange",
    pineapple="nice pineapple",
)

# serialize `test1` into `FruitBucket` object
fruits = FruitBucket(test1)

# `fruits` is a proper python object , which means that you can use 
# `fruits.apple` syntax to retrieve the value of `apple`.
print(fruits.apple)
>>> good apple

# ...and other fruits too.
print(fruits.orange)
>>> very good orange
print(fruits.pineapple)
>>> nice pineapple

# you can get the JSON formatted string back too.
print(fruits)
>>> {"apple": "good apple", "orange": "very good orange", "pineapple": "nice pineapple"}

# interested to get the python dictionary back?
fruits_data = fruits.as_dict()
print(fruits_data)
>>> {'apple': 'good apple', 'orange': 'very good orange', 'pineapple': 'nice pineapple'}

Nested JSON Data

Let's see how we can serialize more complex data structure into python object.

Serializing Nested JSON Data with compound_schema.

Define a nested data schema called compound_schema to serialize nested JSON data.

from serial_j import SerialJ

class SnackBucket(SerialJ):
    schema = [
        {'name': 'apple'},
        {'name': 'orange'},
        {'name': 'pineapple'},
        {'name': 'snack', 'is_compound': True,
            'compound_schema': [
                 {'name': 'cheese', 'optional': True},
                 {'name': 'chocolate'},
                 {'name': 'chips', 'nullable': True},
            ],
        },
    ]

test3 = dict(
    apple="good apple",
    orange="very good orange",
    pineapple="nice pineapple",
    snack=[
        dict(
            cheese="Feta",
            chocolate="Ferrero Rocher",
            chips=[] 
        ),
        dict(
            chocolate="Swiss milk chocolate",
            chips=["Cheetos", "Lays Classic Potato Chips", "Cool Ranch Doritos"] 
        ),
    ]
)
mysnacks = SnackBucket(test3)
print(mysnacks)
>>> {"apple": "good apple", "orange": "very good orange", "pineapple": "nice pineapple", 
>>> "snack": [{"cheese": "Feta", "chocolate": "Ferrero Rocher", "chips": []}, 
>>>           {"chocolate": "Swiss milk chocolate", "chips": 
>>>                ["Cheetos", "Lays Classic Potato Chips", "Cool Ranch Doritos"]}]}
Serializing Nested JSON Data with compound_serializer.

Define a separete data SerialJ serializer called compound_serializer to serialize nested JSON data.

from serial_j import SerialJ
class Snack(SerialJ):
    schema = [
        # cheese is nice but is optional.
        {'name': 'cheese', 'optional': True},
        # chocolate is a MUST have.
        {'name': 'chocolate'},
        # chips is a must but we have to decide which kind later, 
        # so its value can be None, False, "", {}, [].
        {'name': 'chips', 'nullable': True},
    ]
    
class NestedBucket(SerialJ):
    schema = [
        {'name': 'apple'},
        {'name': 'orange'},
        {'name': 'pineapple'},
        {'name': 'snack', 'is_compound': True, 'compound_serializer': Snack}
    ]
    
# test data for NestedBucket
test2 = dict(
    apple="good apple",
    orange="very good orange",
    pineapple="nice pineapple",
    snack=dict(
        chocolate="Ferrero Rocher",
        chips=[] # yeah its a list of chips!
    ),
)
my_snacks = NestedBucket(test2)
print(my_snacks)
>>> {"apple": "good apple", "orange": "very good orange", "pineapple": "nice pineapple", 
>>>  "snack": {"chocolate": "Ferrero Rocher", "chips": []}}

Data Type Validation

a compact example that shows all data types currently suppoted by this package.

from serial_j import SerialJ


class TypedData(SerialJ):
    schema = [
        {'name': 'prop1', 'type': (int,)},
        {'name': 'prop2', 'type': (int, (1, 64, 343))},
        {'name': 'prop3', 'type': (int, range(1, 10, 3))},
        {'name': 'prop4', 'type': (int, lambda x: x % 2 == 0)},
        {'name': 'prop5', 'type': (str,)},
        {'name': 'prop6', 'type': (str, ('SUCCESS', 'FAILURE'))},
        {'name': 'prop7', 'type': (str, 'email')},
        {'name': 'prop8', 'type': (str, 'url')},
        {'name': 'prop9', 'type': (str, 'ipv4')},
        {'name': 'prop10', 'type': (str, 'ipv6')},
        {'name': 'prop11', 'type': (str, 'uuid')},
        {'name': 'prop12', 'type': (str, '[^@]+@[^@]+\.[^@]+')},
        {'name': 'prop13', 'type': (float,)},
        {'name': 'prop14', 'type': (bool,)},
    ]


test1 = {
    'prop1': 1,
    'prop2': 64,
    'prop3': 4,
    'prop4': 2,
    'prop5': "str",
    'prop6': 'SUCCESS',
    'prop7': '[email protected]',
    'prop8': 'https://www.something.com/something-something/something/12345',
    'prop9': '172.16.255.1',
    'prop10': '2001:0db8:0a0b:12f0:0000:0000:0000:0001',
    'prop11': 'c026dd66-86f2-498e-8c2c-858179c0c93d',
    'prop12': '[email protected]',
    'prop13': 0.1,
    'prop14': True
}

data1 = TypedData(test1)
print(data1)
# >>> {"prop1": 1, "prop2": 64, "prop3": 4, "prop4": 2, "prop5": "str",
# >>> "prop6": "SUCCESS", "prop7": "[email protected]",
# >>> "prop8": "https://www.something.com/something-something/something/12345",
# >>> "prop9": "172.16.255.1", "prop10": "2001:0db8:0a0b:12f0:0000:0000:0000:0001",
# >>> "prop11": "c026dd66-86f2-498e-8c2c-858179c0c93d", "prop12": "[email protected]",
# >>> "prop13": 0.1, "prop14": true}

About

Validating and Serializing JSON data into Python object with minimal effort.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published