Skip to content

Commit

Permalink
correct theory file
Browse files Browse the repository at this point in the history
  • Loading branch information
arturgower committed Feb 7, 2024
1 parent 1dc03d9 commit 2b1f42d
Show file tree
Hide file tree
Showing 5 changed files with 4,287 additions and 55 deletions.
Binary file modified docs/src/theory/LowFrequencyReflection.pdf
Binary file not shown.
107 changes: 53 additions & 54 deletions docs/src/theory/LowFrequencyReflection.tex
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@

\doublespacing
% \setlength{\topmargin}{0cm} \addtolength{\textheight}{2cm}
\evensidemargin=0cm \oddsidemargin=0cm \setlength{\textwidth}{16cm}
% \evensidemargin=2cm \oddsidemargin=2cm \setlength{\textwidth}{16cm}

\begin{document}

Expand Down Expand Up @@ -85,22 +85,22 @@ \section{Reflection from multiple random cylinders}
\subsection{Multipole method for cylinders}

Here we give the exact theory for scalar multiple wave scattering from a finite number $N$ of circular cylinders. The pressure $u$ outside all the cylinders satisfies the scalar Helmholtz equation
\be
\begin{equation}
\nabla^2 u + k^2 u = 0,
% c^2 \nabla^2 u + \omega^2 u = 0,
\en
\end{equation}
and inside the $j$th cylinder the pressure $u_j$ satisfies
\be
\begin{equation}
\nabla^2 u_j + k^2_o u_j = 0, \quad \text{for} \; j=1,2,\ldots, N,
% c_j^2 \nabla^2 u_j + \omega^2 u_j = 0, \quad \text{for} \; j=1,2,\ldots, N,
% \\
% c_{N_\cs + 1}^2 \nabla^2 u^{N_\cs +j} + \omega^2 u^{N_\cs +j} = 0 \quad \text{for} \; j= 1, 2,\ldots, N_\cl
\en
\end{equation}

where $\nabla^2$ is the two-dimensional Laplacian and
\be \label{eqns:wavenumbers}
\begin{equation} \label{eqns:wavenumbers}
k = \omega/c \quad \text{and} \quad k_o = \omega/c_o.
\en
\end{equation}
% where $\omega$ is the angular frequency and we have implicitly specified a time dependence of $\ee^{-\ii \omega t}$.

\begin{figure}[t]
Expand All @@ -111,38 +111,38 @@ \subsection{Multipole method for cylinders}
\end{figure}

We use for each cylinder the polar coordinates
\be
R_{j} =\| \mathbf x- \mathbf x_{j} \|, \quad \Theta_{j} = \arctan\left ( \frac{y-y_{j}}{x- x_{j}} \right),
\begin{equation}
R_{j} =\| \mathbf x- \mathbf x_{j} \|, \quad \Theta_{j} = \arctan \left( \frac{y-y_{j}}{x- x_{j}} \right),
\label{eqns:polar_coords}
\en
\end{equation}
where $\mathbf x_j$ is the centre of the $j$-th cylinder and $\mathbf x = (x,y)$ is an arbitrary point with origin $O$. See Figure~\ref{fig:multispecies} for a schematic of the material properties and coordinate systems.
Then we can define $u_j$ as the scattered pressure field from the $j$-th cylinder,
\bga \label{eqn:outwaves}
\begin{equation} \label{eqn:outwaves}
u_j(R_j,\Theta_j) = \sum_{m=-\infty}^\infty A_j^m Z^m H_m(k R_j) \ee^{\ii m \Theta_j}, \quad \text{for} \;\; R_j > a_j,
\ega
\end{equation}
where $H_m$ are Hankel functions of the first kind, $A_j^m$ are arbitrary coefficients and $Z^m$ characterises the type of scatterer:
\be
\begin{equation}
Z^m = \frac{q J_m' (k a) J_m ({k_o} a) - J_m (k a) J_m' ({k_o} a) }{q H_m '(k a) J_m({k_o} a) - H_m(k a) J_m '({k_o} a)} = Z^{-m},
\label{eqn:Zm}
\en
\end{equation}
with ${q} = (\rho_o k)/(\rho k_o)$. In the limits ${q} \to 0$ or ${q} \to \infty$, the coefficients for Dirichlet or Neumann boundary conditions are recovered, respectively.


The pressure outside all cylinders is the sum of the incident wave $u_\inc$ and all scattered waves,
\be \label{eq:totwave}
\begin{equation} \label{eq:totwave}
u(x,y) =
% u_\inc(x,y) + u_\mathrm{scatt}(x,y) =
u_\inc(x,y) +\sum_{j=1}^N u_j(R_j,\Theta_j).
\en
\end{equation}
and the total field inside the $j$-th cylinder is
\be \label{eqn:inwaves}
\begin{equation} \label{eqn:inwaves}
u_{j}^\In(R_j,\Theta_j) = \sum_{m=-\infty}^\infty B_j^m J_m(k_j R_j) \ee^{\ii m \Theta_j}, \quad \text{for} \;\; R_j < a_j.
\en
\end{equation}

The unknown coefficients are determined through the boundary conditions of continuity of pressure and normal velocity on the cylinder boundaries:
\be \label{eqn:BC}
\begin{equation} \label{eqn:BC}
u = u^\In_{j} \quad \text{and} \quad \frac{1}{\rho} \frac{\partial u}{\partial R_j} = \frac{1}{\rho_o} \frac{\partial u^\In_{j}}{\partial R_j}, \quad \text{on} \;\; R_j = a\;\; \text{for} \; \; j=1, \ldots, N.
\en
\end{equation}

When the cylinders are far apart, the solution for the $A_j^m$ are similar to the solution for one lone cylinder scattering the incident wave $u_\inc$, which is
\begin{equation}
Expand All @@ -167,40 +167,40 @@ \subsection{Ensemble average}

Consider a configuration of $N$ circular cylinders centred at $\mathbf x_1,\mathbf x_2, \ldots, \mathbf x_N$. Each $\mathbf x_j$ is in the region $\reg$, where $\nfrac {} = N/|\reg|$ is the total number density and $|\reg|$ is the area of $\reg$.
The probability of the cylinders being in a specific configuration is given by the probability density function $\p(\mathbf x_1,\mathbf x_2,\ldots, \mathbf x_N)$, so that
\be
\begin{equation}
\int \p(\mathbf x_1) d \mathbf x_1 = \int \int \p(\mathbf x_1, \mathbf x_2) d \mathbf x_1 d \mathbf x_2 = \ldots = 1.
\en
\end{equation}
And as the cylinders are indistinguishable: $\p(\mathbf x_1, \mathbf x_2) = \p(\mathbf x_2, \mathbf x_1)$.

Furthermore, we have
\bal
\begin{align}
&\p(\mathbf x_1, \ldots, \mathbf x_N) = \p(\mathbf x_j) \p(\mathbf x_{1}, \ldots, \mathbf x_N|\mathbf x_j),
\label{eqns:conditional_probj}
\\
&\p(\mathbf x_1, \ldots, \mathbf x_N|\mathbf x_j) = \p(\mathbf x_\ell |\mathbf x_j) \p( \mathbf x_1, \ldots, \mathbf x_N|\mathbf x_\ell,\mathbf x_j),
\label{eqns:conditional_probsj}
\eal
\end{align}
where $\p(\mathbf x_{1}, \ldots, \mathbf x_N|\mathbf x_j)$ is the conditional probability of having cylinders centred at $\mathbf x_{1}, \ldots, \mathbf x_N$ (not including $\mathbf x_j$), given that the $j$-th cylinder is fixed at $\mathbf x_j$. Likewise, $\p( \mathbf x_1, \ldots, \mathbf x_N| \mathbf x_{\ell},\mathbf x_{j})$ is the conditional probability of having cylinders centred at $\mathbf x_{1}, \ldots, \mathbf x_N$ (not including $\mathbf x_\ell$ and $\mathbf x_j$) given that there are already two cylinders centred at $\mathbf x_\ell$ and $\mathbf x_j$.

Given some function $F(\mathbf x_{1}, \ldots, \mathbf x_{N})$, we denote its average, or {\it expected value}, by
\be
\begin{equation}
\ensem F = \int\ldots \int F(\mathbf x_{1}, \ldots, \mathbf x_{N}) \p(\mathbf x_{1}, \ldots, \mathbf x_{N}) d\mathbf x_{1} \ldots d\mathbf x_{N} .
\en
\end{equation}
If we fix the location and properties of the $j$-th cylinder, $\mathbf x_{j}$ and average over all the properties of the other cylinders, we obtain a {\it conditional average} of $F$ given by
\be
\begin{equation}
\ensem{F}_{\mathbf x_{j}} = {\int\ldots} \int F(\mathbf x_{1}, \ldots, \mathbf x_{N}) \p( \mathbf x_{1}, \ldots, \mathbf x_{N}|\mathbf x_{j}) d \mathbf x_{1} \ldots \mathbf x_N,
\en
\end{equation}
where we do not integrate over $\mathbf x_j$. The average and conditional averages are related by
\bga
\ensem{F} = \int \ensem{F}_{\mathbf x_j} \p(\mathbf x_j) \, d \mathbf x_j \quad \text{and} \quad \ensem{F}_{\mathbf x_j} = \int \ensem{F}_{ \mathbf x_j \mathbf x_\ell} \p(\mathbf x_\ell)\, d \mathbf x_\ell,
\label{eqns:conditional_averages}
\ega
\begin{align}
\ensem{F} = \int \ensem{F}_{\mathbf x_j} \p(\mathbf x_j) \, d \mathbf x_j \quad \text{and} \quad \ensem{F}_{\mathbf x_j} = \int \ensem{F}_{ \mathbf x_j \mathbf x_\ell} \p(\mathbf x_\ell)\, d \mathbf x_\ell,
\label{eqns:conditional_averages}
\end{align}
where $\ensem{ F}_{\mathbf x_\ell\mathbf x_j}$ is the conditional average when fixing both $\mathbf x_j$ and $\mathbf x_\ell$, and $\ensem{ F}_{\mathbf x_\ell\mathbf x_j} = \ensem{ F}_{\mathbf x_j \mathbf x_\ell}$.

We can now calculate the average total pressure (incident plus scattered), measured at some position $\mathbf x$ outside of $\reg$, by averaging~\eqref{eq:totwave} to obtain
\be
\begin{equation}
\ensem{u(x,y)} = u_\inc(x,y) + \sum_{j=1}^N \int \ldots \int u_j(R_j,\Theta_j) \p(\mathbf x_1, \ldots, \mathbf x_N) d \mathbf x_1 \ldots d \mathbf x_N,
\en
\end{equation}
where $\ensem{u_\inc(x,y)} = u_\inc(x,y)$, because the incident field is independent of the scattering configuration.
% , and $r_1$ and $\theta_1$ depend on $\mathbf x_1$ and $\mathbf x$ through the definitions~\eqref{eqns:polar_coords}.
We can then rewrite the average outgoing wave $u_j$ by fixing the properties of the $j$-th cylinder $\mathbf x_j$ and using equation~\eqref{eqns:conditional_probj} to reach
Expand All @@ -220,10 +220,10 @@ \subsection{Ensemble average}
\ega

We will use the simplest approximations possible, which are a random uniform distribution
\be
\begin{equation}
\p(\Lam 1) = \frac{1}{|\reg|},
\label{eqn:pLam1}
\en
\end{equation}
which combined with~\eqref{eqn:AverageWave} and \eqref{eqn:AverageWaveCond}, and taking the limit $N \to \infty$ with ${\reg}$ turning into a halfspace $x_1>0$, leads to
\begin{equation}
\ensem{u(x,y)} = u_\inc(x,y)+ \nfrac {} \sum_{m=-\infty}^\infty \scatZ^m \int_{x_1>0} \ensem{A_1^m}_{\mathbf x_1} H_m^{(1)}(k R_1) \ee^{\ii m \Theta_1} d \mathbf x_1.
Expand All @@ -236,69 +236,68 @@ \subsection{Effective medium approach}
The simplest approach is to assume that, on average, the wave exciting a scatterer is a plane wave.
That is, for $x_1 > 0$, we assume
\begin{align}
\ensem{A_1^m}_{\mathbf x_1} = \ii^m \ee^{-\ii m \theta_\eff} \A m_\eff \ee^{\ii \mathbf x \cdot \mathbf k_\eff}, \quad \text{for} \quad x>{0},
\ensem{A_1^m}_{\mathbf x_1} = \ii^m \ee^{-\ii m \theta_\eff} \A{m_\eff} \ee^{\ii \mathbf x \cdot \mathbf k_\eff}, \quad \text{for} \quad x>{0},
\label{eqn:AnsatzA}
\end{align}
where the constant factor $\ii^m \ee^{-\ii m \theta_\eff}$ is just for later convenience, $\A m_\eff$ is an unknown constant (for now), and we define
where the constant factor $\ii^m \ee^{-\ii m \theta_\eff}$ is just for later convenience, $\A{m_\eff}$ is an unknown constant (for now), and we define
\begin{equation}
\mathbf k_\eff =(\alpha_\eff, \beta) := k_\eff(\cos\theta_\eff, \sin\theta_\eff),
\end{equation}
and from Snell's law
\begin{equation}
k_\eff \sin \theta_\eff = k \sin \theta_\inc,
\label{eqn:Snells}
\end{equation}
noting that both $\theta_\eff$ and $k_\eff$ are complex numbers.

\begin{align}
& \A m_\eff(\s_1) + 2 \pi \nfrac {} \sum_{n=-\infty}^\infty\int_\regS \A n_\eff(\s_2)
& \A{m_\eff}(\s_1) + 2 \pi \nfrac {} \sum_{n=-\infty}^\infty\int_\regS \A{n_\eff}(\s_2)
\left [ \frac{\mathcal N_{n-m}(ka_{12},k_\eff a_{12})}{k^2 - k_\eff^2} \right]
d\s_2^n
= 0,
\label{eqn:AmT}
\\
&
\sum_{n=-\infty}^\infty \ee^{\ii n (\theta_\inc - \theta_\eff)} \int_\regS
\A n_\eff(\s_2) d\s_2^n = (\alpha_\eff-\alpha) \frac{\alpha \ii}{2 \nfrac {} },
\A{n_\eff}(\s_2) d\s_2^n = (\alpha_\eff-\alpha) \frac{\alpha \ii}{2 \nfrac {} },
\label{eqn:AmInc}
\end{align}
where
\begin{equation}
d \s_2^n = Z^n(\s_2) p(\s_2) d\s_2,
\end{equation}
% $a_2$ is the radius of the $s_2$ specie,
we used whole-correction and ignored the boundary layer (which disappears in the low-frequency limit anyway). The above equations are sufficient to completely determine $k_\eff$ and $\A n_\eff$.
we used whole-correction and ignored the boundary layer (which disappears in the low-frequency limit anyway). The above equations are sufficient to completely determine $k_\eff$ and $\A{n_\eff}$.

First using $k_\eff = c k /c_\eff $:
\[
\mathcal N_{n}(ka_{12},k_\eff a_{12}) \sim \frac{2 \ii c^{|n|}}{\pi c_\eff^{|n|}} + \mathcal O(k^2),
\]
because this does not depend on the species, we can move it outside the integral in~\eqref{eqn:AmT}, multiple $Z^m(\s_1) p(\s_1)$ on both sides of the equation and then integrate in $\s_1$ to reach,
\begin{align}
& \ensem{\A m_\eff}^m + \frac{4 \ii \nfrac {}}{k^2} \frac{c_\eff^2}{c_\eff^2- c^2} \sum_{n=-1}^1
& \ensem{\A{m_\eff}}^m + \frac{4 \ii \nfrac {}}{k^2} \frac{c_\eff^2}{c_\eff^2- c^2} \sum_{n=-1}^1
\frac{c^{|n-m|}}{c_\eff^{|n-m|}}
\ensem{\A n_\eff}^n \ensem{Z^m}
\ensem{\A{n_\eff}}^n \ensem{Z^m}
= 0,
\label{eqn:EnsemAmT}
\end{align}
% \begin{align}
% & \ensem{\A m_\eff}^m + \frac{\ii \pi \phi}{2} \frac{c_\eff^2}{c_\eff^2- c^2} \sum_{n=-1}^1
% & \ensem{\A{m_\eff}}^m + \frac{\ii \pi \phi}{2} \frac{c_\eff^2}{c_\eff^2- c^2} \sum_{n=-1}^1
% \frac{2 \ii c^{|n-m|}}{\pi c_\eff^{|n-m|}}
% \ensem{\A n_\eff}^n \ensem{Z^m}
% \ensem{\A{n_\eff}}^n \ensem{Z^m}
% = 0,
% \label{eqn:EnsemAmT}
% \end{align}
where
\begin{gather}
\ensem{\A m_\eff}^m = \int_\regS \A m_\eff(\s_o) d\s_o^m,
\ensem{\A{m_\eff}}^m = \int_\regS \A{m_\eff}(\s_o) d\s_o^m,
\quad \ensem{Z^n} = \int_\regS Z^n(\s_o) p(\s_o) d\s_o, \\
\ensem{Z^0} = \frac{\ii k^2 \pi}{4} \ensem{a_o\frac{\beta_o-\beta}{\beta_o}}, \quad \ensem{Z^1} = \ensem{Z^{-1}} = \frac{\ii k^2 \pi}{4} \ensem{a^2_o\frac{\rho - \rho_o}{\rho + \rho_o}},
\end{gather}
$a_o$ is the radius\footnote{If you find the appearance of the radius $a_o$ strange, have a look at the next section.} of the species $\s_o$, and we define $\ensem{f}^m = \ensem{f Z^m}$.


Equation~\eqref{eqn:EnsemAmT} is now in the same form as the single species equation. By evaluating~\eqref{eqn:EnsemAmT} for $m=-1,0,1$, we reach three equations with unknowns $\ensem{{\A {{-1}}}_\eff}^{-1}$, $\ensem{\A {0}_\eff}^0$, $\ensem{\A {1}_\eff}^1$, and $c_\eff$.
By forming a matrix equation for the $\ensem{{\A {{m}}}_\eff}^m$, then setting the determinant of this matrix to zero, and solving for $c_\eff$, we reach
Equation~\eqref{eqn:EnsemAmT} is now in the same form as the single species equation. By evaluating~\eqref{eqn:EnsemAmT} for $m=-1,0,1$, we reach three equations with unknowns $\ensem{{\A {{-1}_\eff}}}^{-1}$, $\ensem{\A {{0}_\eff}}^0$, $\ensem{\A {{1}_\eff}}^1$, and $c_\eff$.
By forming a matrix equation for the $\ensem{{\A {m_\eff}}}^m$, then setting the determinant of this matrix to zero, and solving for $c_\eff$, we reach
\begin{equation}
c_\eff^2 = \frac{\beta_\eff}{\rho_\eff}, \quad \text{with} \;\;
\frac{1}{\beta_\eff} = \frac{1-\nfrac {} \pi \ensem{a_o^2}}{\beta} + \nfrac {} \pi \ensem{\frac{a_o^2}{\beta_o}}, \quad
Expand All @@ -307,13 +306,13 @@ \subsection{Effective medium approach}
\end{equation}
Using the above in \eqref{eqn:EnsemAmT}, we can reach
\begin{equation}
\ensem{\A {0}_\eff}^0 = 2\frac{\beta-\beta_\eff}{\rho-\rho_\eff}\sqrt{\frac{\rho \rho_\eff}{\beta \beta_\eff}} \ensem{\A {1}_\eff}^1 \quad \text{and} \quad \ensem{{\A {{-1}}}_\eff}^{-1} = \ensem{{\A {{1}}}_\eff}^{1}.
\ensem{\A {{0}_\eff}}^0 = 2\frac{\beta-\beta_\eff}{\rho-\rho_\eff}\sqrt{\frac{\rho \rho_\eff}{\beta \beta_\eff}} \ensem{\A {{1}_\eff}}^1 \quad \text{and} \quad \ensem{{\A {{-1}}}_\eff}^{-1} = \ensem{\A {{1}_\eff}}^{1}.
\label{eqn:As}
\end{equation}

To determine $\ensem{{\A {{1}}}_\eff}$ we use~\eqref{eqn:AmInc}, which leads to
To determine $\ensem{\A {{1}_\eff}}$ we use~\eqref{eqn:AmInc}, which leads to
\begin{equation}
\ensem{\A {1}_\eff}^1 = (\rho-\rho_\eff) \cos \theta_\inc \frac{\ii a^2 k^2 \pi}{4 \phi} \frac{ \cos \theta_\inc -\sqrt{\frac{\rho_\eff \beta}{\rho \beta_\eff}} \cos \theta_\eff}{
\ensem{\A{{1}_\eff}}^1 = (\rho-\rho_\eff) \cos \theta_\inc \frac{\ii a^2 k^2 \pi}{4 \phi} \frac{ \cos \theta_\inc -\sqrt{\frac{\rho_\eff \beta}{\rho \beta_\eff}} \cos \theta_\eff}{
\sqrt{\frac{\beta_\eff \rho \rho_\eff}{\beta}}\left(\frac{\beta}{\beta_\eff} -1 \right) - (\rho-\rho_\eff)\cos(\theta_\inc -\theta_\eff)
}.
\label{eqn:A1}
Expand All @@ -334,7 +333,7 @@ \subsection{A discrete number of species}
\begin{equation}
\frac{1}{\beta_\eff} = \frac{1-\phi}{\beta} + \sum_j \frac{\phi_j}{\beta_j}, \quad
\rho_\eff = \rho \frac{1 - \sum_j \phi_j \frac{\rho-\rho_j}{\rho+\rho_j}}{1 + \sum_j \phi_j \frac{\rho-\rho_j}{\rho+\rho_j}}.
\label{eqns:effective_properties}
% \label{eqns:effective_properties}
\end{equation}

\subsection{Average low-frequency reflection}
Expand All @@ -352,7 +351,7 @@ \subsection{Average low-frequency reflection}
\begin{align}
&\ensem{u(x,y)} = u_\inc(x,y) + R_o \ee^{-\ii \alpha x + \ii \beta y}, \quad \theta_\reflect = \pi - \theta_\eff - \theta_\inc,
\\
& R_o = \frac{1}{a^2 \pi k \cos \theta_\inc }\frac{2 \ii \phi}{k \cos \theta_\inc + k_\eff \cos \theta_\eff} \sum_{m=-\infty}^\infty \ee^{\ii m \theta_\reflect} \ensem{\A {m}_\eff}^m.
& R_o = \frac{1}{a^2 \pi k \cos \theta_\inc }\frac{2 \ii \phi}{k \cos \theta_\inc + k_\eff \cos \theta_\eff} \sum_{m=-\infty}^\infty \ee^{\ii m \theta_\reflect} \ensem{\A{{m}_\eff}}^m.
\label{eqn:ReflectionEnsemble}
\end{align}
Substituting~\eqref{eqn:As} and \eqref{eqn:A1} we reach, after algebraic manipulation, that
Expand Down
Loading

0 comments on commit 2b1f42d

Please sign in to comment.