Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add function for machine precision number to avoid expensive calculations in the Givens rotation algorithms #8660

Merged
merged 1 commit into from
Oct 14, 2014
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -75,6 +75,8 @@ Library improvements

* `deepcopy` recurses through immutable types and makes copies of their mutable fields ([#8560]).

* Givens type doesn't have a size anymore and is no longer a subtype of AbstractMatrix ([#8660])

Deprecated or removed
---------------------

Expand Down
46 changes: 23 additions & 23 deletions base/linalg/givens.jl
Original file line number Diff line number Diff line change
@@ -1,5 +1,4 @@
immutable Givens{T} <: AbstractMatrix{T}
size::Int
immutable Givens{T}
i1::Int
i2::Int
c::T
Expand All @@ -11,14 +10,18 @@ type Rotation{T}
end
typealias AbstractRotation Union(Givens, Rotation)

realmin2(::Type{Float32}) = reinterpret(Float32, 0x26000000)
realmin2(::Type{Float64}) = reinterpret(Float64, 0x21a0000000000000)
realmin2{T}(::Type{T}) = (twopar = 2one(T); twopar^itrunc(log(realmin(T)/eps(T))/log(twopar)/twopar))

function givensAlgorithm{T<:FloatingPoint}(f::T, g::T)
zeropar = zero(T)
onepar = one(T)
twopar = 2one(T)

safmin = realmin(T)
epspar = eps(T)
safmn2 = twopar^itrunc(log(safmin/epspar)/log(twopar)/twopar)
safmn2 = realmin2(T)
safmx2 = onepar/safmn2

if g == 0
Expand Down Expand Up @@ -84,7 +87,7 @@ function givensAlgorithm{T<:FloatingPoint}(f::Complex{T}, g::Complex{T})
abs1(ff) = max(abs(real(ff)), abs(imag(ff)))
safmin = realmin(T)
epspar = eps(T)
safmn2 = twopar^itrunc(log(safmin/epspar)/log(twopar)/twopar)
safmn2 = realmin2(T)
safmx2 = onepar/safmn2
scalepar = max(abs1(f), abs1(g))
fs = f
Expand Down Expand Up @@ -181,33 +184,25 @@ function givensAlgorithm{T<:FloatingPoint}(f::Complex{T}, g::Complex{T})
return cs, sn, r
end

function givens{T}(f::T, g::T, i1::Integer, i2::Integer, size::Integer)
i2 <= size || error("indices cannot be larger than size Givens rotation matrix")
function givens{T}(f::T, g::T, i1::Integer, i2::Integer)
i1 < i2 || error("second index must be larger than the first")
h = givensAlgorithm(f, g)
Givens(size, i1, i2, convert(T, h[1]), convert(T, h[2]), convert(T, h[3]))
c, s, r = givensAlgorithm(f, g)
Givens(i1, i2, convert(T, c), convert(T, s), convert(T, r))
end

function givens{T}(A::AbstractMatrix{T}, i1::Integer, i2::Integer, col::Integer)
i1 < i2 || error("second index must be larger than the first")
h = givensAlgorithm(A[i1,col], A[i2,col])
Givens(size(A, 1), i1, i2, convert(T, h[1]), convert(T, h[2]), convert(T, h[3]))
c, s, r = givensAlgorithm(A[i1,col], A[i2,col])
Givens(i1, i2, convert(T, c), convert(T, s), convert(T, r))
end

*{T}(G1::Givens{T}, G2::Givens{T}) = Rotation(push!(push!(Givens{T}[], G2), G1))
*(G::Givens, B::BitArray{2}) = error("method not defined")
*{TBf,TBi}(G::Givens, B::SparseMatrixCSC{TBf,TBi}) = error("method not defined")
*(R::AbstractRotation, A::AbstractMatrix) = A_mul_B!(R, copy(A))

A_mul_Bc(A::AbstractMatrix, R::Rotation) = A_mul_Bc!(copy(A), R)

getindex(G::Givens, i::Integer, j::Integer) = i == j ? (i == G.i1 || i == G.i2 ? G.c : one(G.c)) : (i == G.i1 && j == G.i2 ? G.s : (i == G.i2 && j == G.i1 ? -G.s : zero(G.s)))
size(G::Givens) = (G.size, G.size)
size(G::Givens, i::Integer) = 1 <= i <= 2 ? G.size : 1

A_mul_B!(G1::Givens, G2::Givens) = error("Operation not supported. Consider *")
function A_mul_B!(G::Givens, A::AbstractMatrix)
m, n = size(A)
for i = 1:n
G.i2 <= m || throw(DimensionMismatch("column indices for rotation are outside the matrix"))
@inbounds @simd for i = 1:n
tmp = G.c*A[G.i1,i] + G.s*A[G.i2,i]
A[G.i2,i] = G.c*A[G.i2,i] - conj(G.s)*A[G.i1,i]
A[G.i1,i] = tmp
Expand All @@ -216,7 +211,8 @@ function A_mul_B!(G::Givens, A::AbstractMatrix)
end
function A_mul_Bc!(A::AbstractMatrix, G::Givens)
m, n = size(A)
for i = 1:m
G.i2 <= n || throw(DimensionMismatch("column indices for rotation are outside the matrix"))
@inbounds @simd for i = 1:m
tmp = G.c*A[i,G.i1] + conj(G.s)*A[i,G.i2]
A[i,G.i2] = G.c*A[i,G.i2] - G.s*A[i,G.i1]
A[i,G.i1] = tmp
Expand All @@ -228,14 +224,18 @@ function A_mul_B!(G::Givens, R::Rotation)
return R
end
function A_mul_B!(R::Rotation, A::AbstractMatrix)
for i = 1:length(R.rotations)
@inbounds for i = 1:length(R.rotations)
A_mul_B!(R.rotations[i], A)
end
return A
end
function A_mul_Bc!(A::AbstractMatrix, R::Rotation)
for i = 1:length(R.rotations)
@inbounds for i = 1:length(R.rotations)
A_mul_Bc!(A, R.rotations[i])
end
return A
end
*{T}(G1::Givens{T}, G2::Givens{T}) = Rotation(push!(push!(Givens{T}[], G2), G1))
*(R::AbstractRotation, A::AbstractMatrix) = A_mul_B!(R, copy(A))

A_mul_Bc(A::AbstractMatrix, R::AbstractRotation) = A_mul_Bc!(copy(A), R)