Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Preserve Hessenberg shape when possible #40039

Merged
merged 7 commits into from
Apr 11, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -93,6 +93,7 @@ Standard library changes
* On aarch64, OpenBLAS now uses an ILP64 BLAS like all other 64-bit platforms. ([#39436])
* OpenBLAS is updated to 0.3.13. ([#39216])
* SuiteSparse is updated to 5.8.1. ([#39455])
* The shape of an `UpperHessenberg` matrix is preserved under certain arithmetic operations, e.g. when multiplying or dividing by an `UpperTriangular` matrix. ([#40039])
* `cis(A)` now supports matrix arguments ([#40194]).

#### Markdown
Expand Down
91 changes: 85 additions & 6 deletions stdlib/LinearAlgebra/src/hessenberg.jl
Original file line number Diff line number Diff line change
Expand Up @@ -94,17 +94,96 @@ Base.copy(A::Transpose{<:Any,<:UpperHessenberg}) = tril!(transpose!(similar(A.pa
rmul!(H::UpperHessenberg, x::Number) = (rmul!(H.data, x); H)
lmul!(x::Number, H::UpperHessenberg) = (lmul!(x, H.data); H)

# (future: we could also have specialized routines for UpperHessenberg * UpperTriangular)

fillstored!(H::UpperHessenberg, x) = (fillband!(H.data, x, -1, size(H,2)-1); H)

+(A::UpperHessenberg, B::UpperHessenberg) = UpperHessenberg(A.data+B.data)
-(A::UpperHessenberg, B::UpperHessenberg) = UpperHessenberg(A.data-B.data)
# (future: we could also have specialized routines for UpperHessenberg ± UpperTriangular)

# shift Hessenberg by λI
+(H::UpperHessenberg, J::UniformScaling) = UpperHessenberg(H.data + J)
-(J::UniformScaling, H::UpperHessenberg) = UpperHessenberg(J - H.data)
for T = (:UniformScaling, :Diagonal, :Bidiagonal, :Tridiagonal, :SymTridiagonal,
:UpperTriangular, :UnitUpperTriangular)
for op = (:+, :-)
@eval begin
$op(H::UpperHessenberg, x::$T) = UpperHessenberg($op(H.data, x))
$op(x::$T, H::UpperHessenberg) = UpperHessenberg($op(x, H.data))
end
end
end

for T = (:Number, :UniformScaling, :Diagonal)
@eval begin
*(H::UpperHessenberg, x::$T) = UpperHessenberg(H.data * x)
*(x::$T, H::UpperHessenberg) = UpperHessenberg(x * H.data)
/(H::UpperHessenberg, x::$T) = UpperHessenberg(H.data / x)
\(x::$T, H::UpperHessenberg) = UpperHessenberg(x \ H.data)
end
end

function *(H::UpperHessenberg, U::UpperOrUnitUpperTriangular)
T = typeof(oneunit(eltype(H))*oneunit(eltype(U)))
HH = similar(H.data, T, size(H))
copyto!(HH, H)
rmul!(HH, U)
UpperHessenberg(HH)
end
function *(U::UpperOrUnitUpperTriangular, H::UpperHessenberg)
T = typeof(oneunit(eltype(H))*oneunit(eltype(U)))
HH = similar(H.data, T, size(H))
copyto!(HH, H)
lmul!(U, HH)
UpperHessenberg(HH)
end

function /(H::UpperHessenberg, U::UpperTriangular)
T = typeof(oneunit(eltype(H))/oneunit(eltype(U)))
HH = similar(H.data, T, size(H))
copyto!(HH, H)
rdiv!(HH, U)
UpperHessenberg(HH)
end
function /(H::UpperHessenberg, U::UnitUpperTriangular)
T = typeof(oneunit(eltype(H))/oneunit(eltype(U)))
HH = similar(H.data, T, size(H))
copyto!(HH, H)
rdiv!(HH, U)
UpperHessenberg(HH)
end

function \(U::UpperTriangular, H::UpperHessenberg)
T = typeof(oneunit(eltype(U))\oneunit(eltype(H)))
HH = similar(H.data, T, size(H))
copyto!(HH, H)
ldiv!(U, HH)
UpperHessenberg(HH)
end
function \(U::UnitUpperTriangular, H::UpperHessenberg)
T = typeof(oneunit(eltype(U))\oneunit(eltype(H)))
HH = similar(H.data, T, size(H))
copyto!(HH, H)
ldiv!(U, HH)
UpperHessenberg(HH)
end

function *(H::UpperHessenberg, B::Bidiagonal)
TS = promote_op(matprod, eltype(H), eltype(B))
if B.uplo == 'U'
A_mul_B_td!(UpperHessenberg(zeros(TS, size(H)...)), H, B)
else
A_mul_B_td!(zeros(TS, size(H)...), H, B)
end
end
function *(B::Bidiagonal, H::UpperHessenberg)
TS = promote_op(matprod, eltype(B), eltype(H))
if B.uplo == 'U'
A_mul_B_td!(UpperHessenberg(zeros(TS, size(B)...)), B, H)
else
A_mul_B_td!(zeros(TS, size(B)...), B, H)
end
end

function /(H::UpperHessenberg, B::Bidiagonal)
A = Base.@invoke /(H::AbstractMatrix, B::Bidiagonal)
B.uplo == 'U' ? UpperHessenberg(A) : A
end

# Solving (H+µI)x = b: we can do this in O(m²) time and O(m) memory
# (in-place in x) by the RQ algorithm from:
Expand Down
52 changes: 52 additions & 0 deletions stdlib/LinearAlgebra/test/hessenberg.jl
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,10 @@ module TestHessenberg

using Test, LinearAlgebra, Random

const BASE_TEST_PATH = joinpath(Sys.BINDIR, "..", "share", "julia", "test")
isdefined(Main, :Furlongs) || @eval Main include(joinpath($(BASE_TEST_PATH), "testhelpers", "Furlongs.jl"))
using .Main.Furlongs

# for tuple tests below
(x,y) = all(p -> p[1] p[2], zip(x,y))

Expand Down Expand Up @@ -55,6 +59,54 @@ let n = 10
H = UpperHessenberg(Areal)
@test Array(Hc + H) == Array(Hc) + Array(H)
@test Array(Hc - H) == Array(Hc) - Array(H)
@testset "Preserve UpperHessenberg shape (issue #39388)" begin
for H = (UpperHessenberg(Areal), UpperHessenberg(Furlong.(Areal)))
if eltype(H) <: Furlong
A = Furlong.(rand(n,n))
d = Furlong.(rand(n))
dl = Furlong.(rand(n-1))
du = Furlong.(rand(n-1))
us = Furlong(1)*I
else
A = rand(n,n)
d = rand(n)
dl = rand(n-1)
du = rand(n-1)
us = 1*I
end
@testset "$op" for op = (+,-)
for x = (us, Diagonal(d), Bidiagonal(d,dl,:U), Bidiagonal(d,dl,:L),
Tridiagonal(dl,d,du), SymTridiagonal(d,dl),
UpperTriangular(A), UnitUpperTriangular(A))
@test op(H,x) == op(Array(H),x)
@test op(x,H) == op(x,Array(H))
@test op(H,x) isa UpperHessenberg
@test op(x,H) isa UpperHessenberg
end
end
A = randn(n,n)
d = randn(n)
dl = randn(n-1)
@testset "Multiplication/division" begin
for x = (5, 5I, Diagonal(d), Bidiagonal(d,dl,:U),
UpperTriangular(A), UnitUpperTriangular(A))
@test H*x == Array(H)*x broken = eltype(H) <: Furlong && x isa Bidiagonal
@test x*H == x*Array(H) broken = eltype(H) <: Furlong && x isa Bidiagonal
@test H/x == Array(H)/x broken = eltype(H) <: Furlong && x isa Union{Bidiagonal, Diagonal, UpperTriangular}
@test x\H == x\Array(H) broken = eltype(H) <: Furlong && x isa Union{Bidiagonal, Diagonal, UpperTriangular}
@test H*x isa UpperHessenberg broken = eltype(H) <: Furlong && x isa Bidiagonal
@test x*H isa UpperHessenberg broken = eltype(H) <: Furlong && x isa Bidiagonal
@test H/x isa UpperHessenberg broken = eltype(H) <: Furlong && x isa Union{Bidiagonal, Diagonal}
@test x\H isa UpperHessenberg broken = eltype(H) <: Furlong && x isa Union{Bidiagonal, Diagonal}
end
x = Bidiagonal(d, dl, :L)
@test H*x == Array(H)*x
@test x*H == x*Array(H)
@test H/x == Array(H)/x broken = eltype(H) <: Furlong
@test_broken x\H == x\Array(H) # issue 40037
end
end
end
end

@testset for eltya in (Float32, Float64, ComplexF32, ComplexF64, Int), herm in (false, true)
Expand Down
1 change: 1 addition & 0 deletions test/testhelpers/Furlongs.jl
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,7 @@ Base.floatmin(::Type{Furlong{p,T}}) where {p,T<:AbstractFloat} = Furlong{p}(floa
Base.floatmin(::Furlong{p,T}) where {p,T<:AbstractFloat} = floatmin(Furlong{p,T})
Base.floatmax(::Type{Furlong{p,T}}) where {p,T<:AbstractFloat} = Furlong{p}(floatmax(T))
Base.floatmax(::Furlong{p,T}) where {p,T<:AbstractFloat} = floatmax(Furlong{p,T})
Base.conj(x::Furlong{p,T}) where {p,T} = Furlong{p,T}(conj(x.val))

# convert Furlong exponent p to a canonical form. This
# is not type stable, but it doesn't matter since it is used
Expand Down