Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

SIMD performance regression tests #13692

Closed
wants to merge 3 commits into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
114 changes: 114 additions & 0 deletions test/simdloop.jl
Original file line number Diff line number Diff line change
Expand Up @@ -125,3 +125,117 @@ crng = CartesianRange(CartesianIndex{0}(),
CartesianIndex{0}())
indexes = simd_cartesian_range!(Array(eltype(crng), 0), crng)
@test indexes == collect(crng)

#==================================================================#
# Codegen tests: check that vectorized LLVM code is actually emitted
# https://github.com/JuliaLang/julia/issues/13686

function has_llvm_vector(func, argtypes...)
# look for "vector.body:" in the generated LLVM code:
contains(Base._dump_function(func, argtypes, false, false, true, false), "vector.body:")
end

function simd_loop_long_expr(x, y, z)
# SIMD loop with a longer expression
@simd for i=1:length(x)
@inbounds begin
x[i] = y[i] * (z[i] > y[i]) * (z[i] < y[i]) * (z[i] >= y[i]) * (z[i] <= y[i])
end
end
end

function simd_loop_local_arrays()
# SIMD loop on local arrays declared without type annotations
x = Array(Float32,1000)
y = Array(Float32,1000)
z = Array(Float32,1000)
@simd for i = 1:length(x)
@inbounds x[i] = y[i] * z[i]
end
end

immutable ImmutableFields
x::Array{Float32, 1}
y::Array{Float32, 1}
z::Array{Float32, 1}
end

type MutableFields
x::Array{Float32, 1}
y::Array{Float32, 1}
z::Array{Float32, 1}
end

function simd_loop_fields(obj)
# SIMD loop with field access
@simd for i = 1:length(obj.x)
@inbounds obj.x[i] = obj.y[i] * obj.z[i]
end
end

@generated function simd_loop_call{func}(::Type{Val{func}}, arguments)
# SIMD loop calling a configurable function on local arrays
arrays = []
decls = []
for (T, sym) in zip(arguments.types, "abcdefghij")
arr = Symbol(string(sym))
push!(arrays, :($arr[idx]))
# add type annotations to avoid confusing failures due to
# the function calls with failures due to type inference:
push!(decls, :($arr::Array{$T,1} = Array($T,1000)))
end
code = quote
$(Expr(:meta, :fastmath))
$(decls...)
@simd for idx=1:length(a)
@inbounds a[idx] = $func($(arrays[2:end]...))
end
end
code
end

# Check that the basic SIMD examples above actually generated vectorized LLVM code:
for T in [Int32,Int64,Float32,Float64]
AR = Array{T,1}
@test has_llvm_vector(simd_loop_example_from_manual, AR, AR, AR)

# TODO: uncomment the following tests
# @test has_llvm_vector(simd_loop_with_multiple_reductions, AR, AR, AR)
# @test has_llvm_vector(simd_loop_long_expr, AR, AR, AR)
# TODO: uncomment the above tests
end

# Test for vectorization of intrinsic functions that LLVM supports:
# cf. http://llvm.org/docs/Vectorizers.html#vectorization-of-function-calls
for T in [Float32,Float64]
# sanity check or "meta-test" for the @generated function we use:
# this should not fail if the basic tests above passed
@test has_llvm_vector(simd_loop_call, Type{Val{:+}}, Tuple{T, T, T})

@test has_llvm_vector(simd_loop_call, Type{Val{:muladd}}, Tuple{T, T, T, T})
@test has_llvm_vector(simd_loop_call, Type{Val{:abs}}, Tuple{T, T})
# TODO: uncomment the following tests
# @test has_llvm_vector(simd_loop_call, Type{Val{:sqrt}}, Tuple{T, T})
# @test has_llvm_vector(simd_loop_call, Type{Val{:sin}}, Tuple{T, T})
# @test has_llvm_vector(simd_loop_call, Type{Val{:cos}}, Tuple{T, T})
# @test has_llvm_vector(simd_loop_call, Type{Val{:exp}}, Tuple{T, T})
# @test has_llvm_vector(simd_loop_call, Type{Val{:log}}, Tuple{T, T})
# @test has_llvm_vector(simd_loop_call, Type{Val{:log2}}, Tuple{T, T})
# @test has_llvm_vector(simd_loop_call, Type{Val{:log10}}, Tuple{T, T})
# @test has_llvm_vector(simd_loop_call, Type{Val{:floor}}, Tuple{T, T})
# @test has_llvm_vector(simd_loop_call, Type{Val{:ceil}}, Tuple{T, T})
# @test has_llvm_vector(simd_loop_call, Type{Val{:^}}, Tuple{T, T, T})
# @test has_llvm_vector(simd_loop_call, Type{Val{:fma}}, Tuple{T, T, T, T})
# TODO: uncomment the above tests
end

# Test for vectorization of local arrays without type annotations:
# TODO: uncomment the following tests
# @test has_llvm_vector(simd_loop_local_arrays)
# TODO: uncomment the above tests

# Test for vectorization of arrays accessed through fields:
@test has_llvm_vector(simd_loop_fields, ImmutableFields)
# TODO: uncomment the following tests
# @test has_llvm_vector(simd_loop_fields, MutableFields)
# TODO: uncomment the above tests