-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
=== nothing
is not == nothing
with --code-coverage=user
#32579
Comments
I tried other variants:
|
This seems like it shouldn’t happen. |
Seems like someone may have deleted the build log for the OP? |
I can reproduce this locally if I try using Run.jl as in the travis script for that package. |
Looks like the difference is the |
Looking at the IR, I see:
which looks like an optimizer bug, probably in type lifting. |
Ah, I thought I've tried this... But yes, I can reproduce it with Edit: maybe the easiest way to run the script is |
=== nothing
is not == nothing
(only in Travis)=== nothing
is not == nothing
with --code-coverage=user
Maybe related to #30872? |
The bug here is a bit subtle, but perhaps best illustrated with the included test case: ``` function f32579(x::Int64, b::Bool) if b x = nothing end if isa(x, Int64) y = x else y = x end if isa(y, Nothing) z = y else z = y end return z === nothing end ``` The code just after SSA conversion looks like: ``` 2 1 ─ goto #3 if not _3 3 2 ─ %2 = Main.nothing::Core.Compiler.Const(nothing, false) 5 3 ┄ %3 = φ (#2 => %2, #1 => _2)::Union{Nothing, Int64} │ %4 = (%3 isa Main.Int64)::Bool └── goto #5 if not %4 6 4 ─ %6 = π (%3, Int64) └── goto #6 8 5 ─ %8 = π (%3, Nothing) 10 6 ┄ %9 = φ (#4 => %6, #5 => %8)::Union{Nothing, Int64} │ %10 = (%9 isa Main.Nothing)::Bool └── goto #8 if not %10 11 7 ─ %12 = π (%9, Nothing) └── goto #9 13 8 ─ %14 = π (%9, Int64) 15 9 ┄ %15 = φ (#7 => %12, #8 => %14)::Union{Nothing, Int64} │ %16 = (%15 === Main.nothing)::Bool └── return %16 ``` Now, we have special code in SROA (despite it not really being an SROA transform) that looks at `===` and replaces it by a nest of phis of booleans. The reasoning for this transform is that it eliminates a use of a value where we only care about the type and not the content, thus making it more likely that the value will subsequently be eligible for SROA. In addition, while it goes along resolving which values feed into any particular phi, it accumulates and type conditions it encounters along the way. Thus in the example above, something like the following happens: - We look at %14, which πs to %9 with an Int64 constraint, so we only consider the #4 predecessor for %9 (due to the constraint), until we get to %3, where we again only consider the #1 predecessor, where we find the argument (of type Int64) and conclude the result is always false - Now we pop the next item of the stack from our original phi, look at %12, which πs to %9 with a Nothing constraint. At this point we used to terminate the search because we already looked at %9. However, crucially, we looked at %9 only with an Int64 constraint, so we missed the fact that `nothing` was in fact a possible value for this phi. The result was a missing entry in the generated phi node: ``` 1 ─ goto #3 if not b 2 ─ %2 = Main.nothing::Core.Compiler.Const(nothing, false) 3 ┄ %3 = φ (#1 => false)::Bool │ %4 = φ (#2 => %2, #1 => _2)::Union{Nothing, Int64} │ %5 = (%4 isa Main.Int64)::Bool └── goto #5 if not %5 4 ─ %7 = π (%4, Int64) └── goto #6 5 ─ %9 = π (%4, Nothing) 6 ┄ %10 = φ (#4 => %3, #5 => %3)::Bool │ %11 = φ (#4 => %7, #5 => %9)::Union{Nothing, Int64} │ %12 = (%11 isa Main.Nothing)::Bool └── goto #8 if not %12 7 ─ goto #9 8 ─ nothing::Nothing 9 ┄ %16 = φ (#7 => %10, #8 => %10)::Bool └── return %16 ``` (note the missing #2 predecessor in phi node %3), which would result in an undefined value at runtime, though in this case LLVM would have taken advantage of that to just return 0: ``` define i8 @julia_f32579_16051(i64, i8) { top: ; @ REPL[1]:15 within `f32579' ret i8 0 } ``` Compare this now to the optimized IR with this patch: ``` 1 ─ goto #3 if not b 2 ─ %2 = Main.nothing::Core.Compiler.Const(nothing, false) 3 ┄ %3 = φ (#2 => true, #1 => false)::Bool │ %4 = φ (#2 => %2, #1 => _2)::Union{Nothing, Int64} │ %5 = (%4 isa Main.Int64)::Bool └── goto #5 if not %5 4 ─ %7 = π (%4, Int64) └── goto #6 5 ─ %9 = π (%4, Nothing) 6 ┄ %10 = φ (#4 => %3, #5 => %3)::Bool │ %11 = φ (#4 => %7, #5 => %9)::Union{Nothing, Int64} │ %12 = (%11 isa Main.Nothing)::Bool └── goto #8 if not %12 7 ─ goto #9 8 ─ nothing::Nothing 9 ┄ %16 = φ (#7 => %10, #8 => %10)::Bool └── return %16 ``` The %3 phi node has its missing entry and the generated LLVM code correctly returns `b`: ``` define i8 @julia_f32579_16112(i64, i8) { top: %2 = and i8 %1, 1 ; @ REPL[1]:15 within `f32579' ret i8 %2 } ```
The bug here is a bit subtle, but perhaps best illustrated with the included test case: ``` function f32579(x::Int64, b::Bool) if b x = nothing end if isa(x, Int64) y = x else y = x end if isa(y, Nothing) z = y else z = y end return z === nothing end ``` The code just after SSA conversion looks like: ``` 2 1 ─ goto #3 if not _3 3 2 ─ %2 = Main.nothing::Core.Compiler.Const(nothing, false) 5 3 ┄ %3 = φ (#2 => %2, #1 => _2)::Union{Nothing, Int64} │ %4 = (%3 isa Main.Int64)::Bool └── goto #5 if not %4 6 4 ─ %6 = π (%3, Int64) └── goto #6 8 5 ─ %8 = π (%3, Nothing) 10 6 ┄ %9 = φ (#4 => %6, #5 => %8)::Union{Nothing, Int64} │ %10 = (%9 isa Main.Nothing)::Bool └── goto #8 if not %10 11 7 ─ %12 = π (%9, Nothing) └── goto #9 13 8 ─ %14 = π (%9, Int64) 15 9 ┄ %15 = φ (#7 => %12, #8 => %14)::Union{Nothing, Int64} │ %16 = (%15 === Main.nothing)::Bool └── return %16 ``` Now, we have special code in SROA (despite it not really being an SROA transform) that looks at `===` and replaces it by a nest of phis of booleans. The reasoning for this transform is that it eliminates a use of a value where we only care about the type and not the content, thus making it more likely that the value will subsequently be eligible for SROA. In addition, while it goes along resolving which values feed into any particular phi, it accumulates and type conditions it encounters along the way. Thus in the example above, something like the following happens: - We look at %14, which πs to %9 with an Int64 constraint, so we only consider the #4 predecessor for %9 (due to the constraint), until we get to %3, where we again only consider the #1 predecessor, where we find the argument (of type Int64) and conclude the result is always false - Now we pop the next item of the stack from our original phi, look at %12, which πs to %9 with a Nothing constraint. At this point we used to terminate the search because we already looked at %9. However, crucially, we looked at %9 only with an Int64 constraint, so we missed the fact that `nothing` was in fact a possible value for this phi. The result was a missing entry in the generated phi node: ``` 1 ─ goto #3 if not b 2 ─ %2 = Main.nothing::Core.Compiler.Const(nothing, false) 3 ┄ %3 = φ (#1 => false)::Bool │ %4 = φ (#2 => %2, #1 => _2)::Union{Nothing, Int64} │ %5 = (%4 isa Main.Int64)::Bool └── goto #5 if not %5 4 ─ %7 = π (%4, Int64) └── goto #6 5 ─ %9 = π (%4, Nothing) 6 ┄ %10 = φ (#4 => %3, #5 => %3)::Bool │ %11 = φ (#4 => %7, #5 => %9)::Union{Nothing, Int64} │ %12 = (%11 isa Main.Nothing)::Bool └── goto #8 if not %12 7 ─ goto #9 8 ─ nothing::Nothing 9 ┄ %16 = φ (#7 => %10, #8 => %10)::Bool └── return %16 ``` (note the missing #2 predecessor in phi node %3), which would result in an undefined value at runtime, though in this case LLVM would have taken advantage of that to just return 0: ``` define i8 @julia_f32579_16051(i64, i8) { top: ; @ REPL[1]:15 within `f32579' ret i8 0 } ``` Compare this now to the optimized IR with this patch: ``` 1 ─ goto #3 if not b 2 ─ %2 = Main.nothing::Core.Compiler.Const(nothing, false) 3 ┄ %3 = φ (#2 => true, #1 => false)::Bool │ %4 = φ (#2 => %2, #1 => _2)::Union{Nothing, Int64} │ %5 = (%4 isa Main.Int64)::Bool └── goto #5 if not %5 4 ─ %7 = π (%4, Int64) └── goto #6 5 ─ %9 = π (%4, Nothing) 6 ┄ %10 = φ (#4 => %3, #5 => %3)::Bool │ %11 = φ (#4 => %7, #5 => %9)::Union{Nothing, Int64} │ %12 = (%11 isa Main.Nothing)::Bool └── goto #8 if not %12 7 ─ goto #9 8 ─ nothing::Nothing 9 ┄ %16 = φ (#7 => %10, #8 => %10)::Bool └── return %16 ``` The %3 phi node has its missing entry and the generated LLVM code correctly returns `b`: ``` define i8 @julia_f32579_16112(i64, i8) { top: %2 = and i8 %1, 1 ; @ REPL[1]:15 within `f32579' ret i8 %2 } ```
The bug here is a bit subtle, but perhaps best illustrated with the included test case: ``` function f32579(x::Int64, b::Bool) if b x = nothing end if isa(x, Int64) y = x else y = x end if isa(y, Nothing) z = y else z = y end return z === nothing end ``` The code just after SSA conversion looks like: ``` 2 1 ─ goto #3 if not _3 3 2 ─ %2 = Main.nothing::Core.Compiler.Const(nothing, false) 5 3 ┄ %3 = φ (#2 => %2, #1 => _2)::Union{Nothing, Int64} │ %4 = (%3 isa Main.Int64)::Bool └── goto #5 if not %4 6 4 ─ %6 = π (%3, Int64) └── goto #6 8 5 ─ %8 = π (%3, Nothing) 10 6 ┄ %9 = φ (#4 => %6, #5 => %8)::Union{Nothing, Int64} │ %10 = (%9 isa Main.Nothing)::Bool └── goto #8 if not %10 11 7 ─ %12 = π (%9, Nothing) └── goto #9 13 8 ─ %14 = π (%9, Int64) 15 9 ┄ %15 = φ (#7 => %12, #8 => %14)::Union{Nothing, Int64} │ %16 = (%15 === Main.nothing)::Bool └── return %16 ``` Now, we have special code in SROA (despite it not really being an SROA transform) that looks at `===` and replaces it by a nest of phis of booleans. The reasoning for this transform is that it eliminates a use of a value where we only care about the type and not the content, thus making it more likely that the value will subsequently be eligible for SROA. In addition, while it goes along resolving which values feed into any particular phi, it accumulates and type conditions it encounters along the way. Thus in the example above, something like the following happens: - We look at %14, which πs to %9 with an Int64 constraint, so we only consider the #4 predecessor for %9 (due to the constraint), until we get to %3, where we again only consider the #1 predecessor, where we find the argument (of type Int64) and conclude the result is always false - Now we pop the next item of the stack from our original phi, look at %12, which πs to %9 with a Nothing constraint. At this point we used to terminate the search because we already looked at %9. However, crucially, we looked at %9 only with an Int64 constraint, so we missed the fact that `nothing` was in fact a possible value for this phi. The result was a missing entry in the generated phi node: ``` 1 ─ goto #3 if not b 2 ─ %2 = Main.nothing::Core.Compiler.Const(nothing, false) 3 ┄ %3 = φ (#1 => false)::Bool │ %4 = φ (#2 => %2, #1 => _2)::Union{Nothing, Int64} │ %5 = (%4 isa Main.Int64)::Bool └── goto #5 if not %5 4 ─ %7 = π (%4, Int64) └── goto #6 5 ─ %9 = π (%4, Nothing) 6 ┄ %10 = φ (#4 => %3, #5 => %3)::Bool │ %11 = φ (#4 => %7, #5 => %9)::Union{Nothing, Int64} │ %12 = (%11 isa Main.Nothing)::Bool └── goto #8 if not %12 7 ─ goto #9 8 ─ nothing::Nothing 9 ┄ %16 = φ (#7 => %10, #8 => %10)::Bool └── return %16 ``` (note the missing #2 predecessor in phi node %3), which would result in an undefined value at runtime, though in this case LLVM would have taken advantage of that to just return 0: ``` define i8 @julia_f32579_16051(i64, i8) { top: ; @ REPL[1]:15 within `f32579' ret i8 0 } ``` Compare this now to the optimized IR with this patch: ``` 1 ─ goto #3 if not b 2 ─ %2 = Main.nothing::Core.Compiler.Const(nothing, false) 3 ┄ %3 = φ (#2 => true, #1 => false)::Bool │ %4 = φ (#2 => %2, #1 => _2)::Union{Nothing, Int64} │ %5 = (%4 isa Main.Int64)::Bool └── goto #5 if not %5 4 ─ %7 = π (%4, Int64) └── goto #6 5 ─ %9 = π (%4, Nothing) 6 ┄ %10 = φ (#4 => %3, #5 => %3)::Bool │ %11 = φ (#4 => %7, #5 => %9)::Union{Nothing, Int64} │ %12 = (%11 isa Main.Nothing)::Bool └── goto #8 if not %12 7 ─ goto #9 8 ─ nothing::Nothing 9 ┄ %16 = φ (#7 => %10, #8 => %10)::Bool └── return %16 ``` The %3 phi node has its missing entry and the generated LLVM code correctly returns `b`: ``` define i8 @julia_f32579_16112(i64, i8) { top: %2 = and i8 %1, 1 ; @ REPL[1]:15 within `f32579' ret i8 %2 } ``` (cherry picked from commit 0a12944)
The bug here is a bit subtle, but perhaps best illustrated with the included test case: ``` function f32579(x::Int64, b::Bool) if b x = nothing end if isa(x, Int64) y = x else y = x end if isa(y, Nothing) z = y else z = y end return z === nothing end ``` The code just after SSA conversion looks like: ``` 2 1 ─ goto #3 if not _3 3 2 ─ %2 = Main.nothing::Core.Compiler.Const(nothing, false) 5 3 ┄ %3 = φ (#2 => %2, #1 => _2)::Union{Nothing, Int64} │ %4 = (%3 isa Main.Int64)::Bool └── goto #5 if not %4 6 4 ─ %6 = π (%3, Int64) └── goto #6 8 5 ─ %8 = π (%3, Nothing) 10 6 ┄ %9 = φ (#4 => %6, #5 => %8)::Union{Nothing, Int64} │ %10 = (%9 isa Main.Nothing)::Bool └── goto #8 if not %10 11 7 ─ %12 = π (%9, Nothing) └── goto #9 13 8 ─ %14 = π (%9, Int64) 15 9 ┄ %15 = φ (#7 => %12, #8 => %14)::Union{Nothing, Int64} │ %16 = (%15 === Main.nothing)::Bool └── return %16 ``` Now, we have special code in SROA (despite it not really being an SROA transform) that looks at `===` and replaces it by a nest of phis of booleans. The reasoning for this transform is that it eliminates a use of a value where we only care about the type and not the content, thus making it more likely that the value will subsequently be eligible for SROA. In addition, while it goes along resolving which values feed into any particular phi, it accumulates and type conditions it encounters along the way. Thus in the example above, something like the following happens: - We look at %14, which πs to %9 with an Int64 constraint, so we only consider the #4 predecessor for %9 (due to the constraint), until we get to %3, where we again only consider the #1 predecessor, where we find the argument (of type Int64) and conclude the result is always false - Now we pop the next item of the stack from our original phi, look at %12, which πs to %9 with a Nothing constraint. At this point we used to terminate the search because we already looked at %9. However, crucially, we looked at %9 only with an Int64 constraint, so we missed the fact that `nothing` was in fact a possible value for this phi. The result was a missing entry in the generated phi node: ``` 1 ─ goto #3 if not b 2 ─ %2 = Main.nothing::Core.Compiler.Const(nothing, false) 3 ┄ %3 = φ (#1 => false)::Bool │ %4 = φ (#2 => %2, #1 => _2)::Union{Nothing, Int64} │ %5 = (%4 isa Main.Int64)::Bool └── goto #5 if not %5 4 ─ %7 = π (%4, Int64) └── goto #6 5 ─ %9 = π (%4, Nothing) 6 ┄ %10 = φ (#4 => %3, #5 => %3)::Bool │ %11 = φ (#4 => %7, #5 => %9)::Union{Nothing, Int64} │ %12 = (%11 isa Main.Nothing)::Bool └── goto #8 if not %12 7 ─ goto #9 8 ─ nothing::Nothing 9 ┄ %16 = φ (#7 => %10, #8 => %10)::Bool └── return %16 ``` (note the missing #2 predecessor in phi node %3), which would result in an undefined value at runtime, though in this case LLVM would have taken advantage of that to just return 0: ``` define i8 @julia_f32579_16051(i64, i8) { top: ; @ REPL[1]:15 within `f32579' ret i8 0 } ``` Compare this now to the optimized IR with this patch: ``` 1 ─ goto #3 if not b 2 ─ %2 = Main.nothing::Core.Compiler.Const(nothing, false) 3 ┄ %3 = φ (#2 => true, #1 => false)::Bool │ %4 = φ (#2 => %2, #1 => _2)::Union{Nothing, Int64} │ %5 = (%4 isa Main.Int64)::Bool └── goto #5 if not %5 4 ─ %7 = π (%4, Int64) └── goto #6 5 ─ %9 = π (%4, Nothing) 6 ┄ %10 = φ (#4 => %3, #5 => %3)::Bool │ %11 = φ (#4 => %7, #5 => %9)::Union{Nothing, Int64} │ %12 = (%11 isa Main.Nothing)::Bool └── goto #8 if not %12 7 ─ goto #9 8 ─ nothing::Nothing 9 ┄ %16 = φ (#7 => %10, #8 => %10)::Bool └── return %16 ``` The %3 phi node has its missing entry and the generated LLVM code correctly returns `b`: ``` define i8 @julia_f32579_16112(i64, i8) { top: %2 = and i8 %1, 1 ; @ REPL[1]:15 within `f32579' ret i8 %2 } ``` (cherry picked from commit 0a12944)
The bug here is a bit subtle, but perhaps best illustrated with the included test case: ``` function f32579(x::Int64, b::Bool) if b x = nothing end if isa(x, Int64) y = x else y = x end if isa(y, Nothing) z = y else z = y end return z === nothing end ``` The code just after SSA conversion looks like: ``` 2 1 ─ goto #3 if not _3 3 2 ─ %2 = Main.nothing::Core.Compiler.Const(nothing, false) 5 3 ┄ %3 = φ (#2 => %2, #1 => _2)::Union{Nothing, Int64} │ %4 = (%3 isa Main.Int64)::Bool └── goto #5 if not %4 6 4 ─ %6 = π (%3, Int64) └── goto #6 8 5 ─ %8 = π (%3, Nothing) 10 6 ┄ %9 = φ (#4 => %6, #5 => %8)::Union{Nothing, Int64} │ %10 = (%9 isa Main.Nothing)::Bool └── goto #8 if not %10 11 7 ─ %12 = π (%9, Nothing) └── goto #9 13 8 ─ %14 = π (%9, Int64) 15 9 ┄ %15 = φ (#7 => %12, #8 => %14)::Union{Nothing, Int64} │ %16 = (%15 === Main.nothing)::Bool └── return %16 ``` Now, we have special code in SROA (despite it not really being an SROA transform) that looks at `===` and replaces it by a nest of phis of booleans. The reasoning for this transform is that it eliminates a use of a value where we only care about the type and not the content, thus making it more likely that the value will subsequently be eligible for SROA. In addition, while it goes along resolving which values feed into any particular phi, it accumulates and type conditions it encounters along the way. Thus in the example above, something like the following happens: - We look at %14, which πs to %9 with an Int64 constraint, so we only consider the #4 predecessor for %9 (due to the constraint), until we get to %3, where we again only consider the #1 predecessor, where we find the argument (of type Int64) and conclude the result is always false - Now we pop the next item of the stack from our original phi, look at %12, which πs to %9 with a Nothing constraint. At this point we used to terminate the search because we already looked at %9. However, crucially, we looked at %9 only with an Int64 constraint, so we missed the fact that `nothing` was in fact a possible value for this phi. The result was a missing entry in the generated phi node: ``` 1 ─ goto #3 if not b 2 ─ %2 = Main.nothing::Core.Compiler.Const(nothing, false) 3 ┄ %3 = φ (#1 => false)::Bool │ %4 = φ (#2 => %2, #1 => _2)::Union{Nothing, Int64} │ %5 = (%4 isa Main.Int64)::Bool └── goto #5 if not %5 4 ─ %7 = π (%4, Int64) └── goto #6 5 ─ %9 = π (%4, Nothing) 6 ┄ %10 = φ (#4 => %3, #5 => %3)::Bool │ %11 = φ (#4 => %7, #5 => %9)::Union{Nothing, Int64} │ %12 = (%11 isa Main.Nothing)::Bool └── goto #8 if not %12 7 ─ goto #9 8 ─ nothing::Nothing 9 ┄ %16 = φ (#7 => %10, #8 => %10)::Bool └── return %16 ``` (note the missing #2 predecessor in phi node %3), which would result in an undefined value at runtime, though in this case LLVM would have taken advantage of that to just return 0: ``` define i8 @julia_f32579_16051(i64, i8) { top: ; @ REPL[1]:15 within `f32579' ret i8 0 } ``` Compare this now to the optimized IR with this patch: ``` 1 ─ goto #3 if not b 2 ─ %2 = Main.nothing::Core.Compiler.Const(nothing, false) 3 ┄ %3 = φ (#2 => true, #1 => false)::Bool │ %4 = φ (#2 => %2, #1 => _2)::Union{Nothing, Int64} │ %5 = (%4 isa Main.Int64)::Bool └── goto #5 if not %5 4 ─ %7 = π (%4, Int64) └── goto #6 5 ─ %9 = π (%4, Nothing) 6 ┄ %10 = φ (#4 => %3, #5 => %3)::Bool │ %11 = φ (#4 => %7, #5 => %9)::Union{Nothing, Int64} │ %12 = (%11 isa Main.Nothing)::Bool └── goto #8 if not %12 7 ─ goto #9 8 ─ nothing::Nothing 9 ┄ %16 = φ (#7 => %10, #8 => %10)::Bool └── return %16 ``` The %3 phi node has its missing entry and the generated LLVM code correctly returns `b`: ``` define i8 @julia_f32579_16112(i64, i8) { top: %2 = and i8 %1, 1 ; @ REPL[1]:15 within `f32579' ret i8 %2 } ``` (cherry picked from commit 0a12944)
Ref #32135 (comment) for another instance of this |
The bug here is a bit subtle, but perhaps best illustrated with the included test case: ``` function f32579(x::Int64, b::Bool) if b x = nothing end if isa(x, Int64) y = x else y = x end if isa(y, Nothing) z = y else z = y end return z === nothing end ``` The code just after SSA conversion looks like: ``` 2 1 ─ goto #3 if not _3 3 2 ─ %2 = Main.nothing::Core.Compiler.Const(nothing, false) 5 3 ┄ %3 = φ (#2 => %2, #1 => _2)::Union{Nothing, Int64} │ %4 = (%3 isa Main.Int64)::Bool └── goto #5 if not %4 6 4 ─ %6 = π (%3, Int64) └── goto #6 8 5 ─ %8 = π (%3, Nothing) 10 6 ┄ %9 = φ (#4 => %6, #5 => %8)::Union{Nothing, Int64} │ %10 = (%9 isa Main.Nothing)::Bool └── goto #8 if not %10 11 7 ─ %12 = π (%9, Nothing) └── goto #9 13 8 ─ %14 = π (%9, Int64) 15 9 ┄ %15 = φ (#7 => %12, #8 => %14)::Union{Nothing, Int64} │ %16 = (%15 === Main.nothing)::Bool └── return %16 ``` Now, we have special code in SROA (despite it not really being an SROA transform) that looks at `===` and replaces it by a nest of phis of booleans. The reasoning for this transform is that it eliminates a use of a value where we only care about the type and not the content, thus making it more likely that the value will subsequently be eligible for SROA. In addition, while it goes along resolving which values feed into any particular phi, it accumulates and type conditions it encounters along the way. Thus in the example above, something like the following happens: - We look at %14, which πs to %9 with an Int64 constraint, so we only consider the #4 predecessor for %9 (due to the constraint), until we get to %3, where we again only consider the #1 predecessor, where we find the argument (of type Int64) and conclude the result is always false - Now we pop the next item of the stack from our original phi, look at %12, which πs to %9 with a Nothing constraint. At this point we used to terminate the search because we already looked at %9. However, crucially, we looked at %9 only with an Int64 constraint, so we missed the fact that `nothing` was in fact a possible value for this phi. The result was a missing entry in the generated phi node: ``` 1 ─ goto #3 if not b 2 ─ %2 = Main.nothing::Core.Compiler.Const(nothing, false) 3 ┄ %3 = φ (#1 => false)::Bool │ %4 = φ (#2 => %2, #1 => _2)::Union{Nothing, Int64} │ %5 = (%4 isa Main.Int64)::Bool └── goto #5 if not %5 4 ─ %7 = π (%4, Int64) └── goto #6 5 ─ %9 = π (%4, Nothing) 6 ┄ %10 = φ (#4 => %3, #5 => %3)::Bool │ %11 = φ (#4 => %7, #5 => %9)::Union{Nothing, Int64} │ %12 = (%11 isa Main.Nothing)::Bool └── goto #8 if not %12 7 ─ goto #9 8 ─ nothing::Nothing 9 ┄ %16 = φ (#7 => %10, #8 => %10)::Bool └── return %16 ``` (note the missing #2 predecessor in phi node %3), which would result in an undefined value at runtime, though in this case LLVM would have taken advantage of that to just return 0: ``` define i8 @julia_f32579_16051(i64, i8) { top: ; @ REPL[1]:15 within `f32579' ret i8 0 } ``` Compare this now to the optimized IR with this patch: ``` 1 ─ goto #3 if not b 2 ─ %2 = Main.nothing::Core.Compiler.Const(nothing, false) 3 ┄ %3 = φ (#2 => true, #1 => false)::Bool │ %4 = φ (#2 => %2, #1 => _2)::Union{Nothing, Int64} │ %5 = (%4 isa Main.Int64)::Bool └── goto #5 if not %5 4 ─ %7 = π (%4, Int64) └── goto #6 5 ─ %9 = π (%4, Nothing) 6 ┄ %10 = φ (#4 => %3, #5 => %3)::Bool │ %11 = φ (#4 => %7, #5 => %9)::Union{Nothing, Int64} │ %12 = (%11 isa Main.Nothing)::Bool └── goto #8 if not %12 7 ─ goto #9 8 ─ nothing::Nothing 9 ┄ %16 = φ (#7 => %10, #8 => %10)::Bool └── return %16 ``` The %3 phi node has its missing entry and the generated LLVM code correctly returns `b`: ``` define i8 @julia_f32579_16112(i64, i8) { top: %2 = and i8 %1, 1 ; @ REPL[1]:15 within `f32579' ret i8 %2 } ``` (cherry picked from commit 0a12944)
I just have a very strange bug that cannot be reproduced locally and replacing
=== nothing
with== nothing
(as below) fixes this bug.See: https://travis-ci.com/tkf/Transducers.jl/builds/119090143 (Ref JuliaFolds/Transducers.jl#17)
Maybe it's relevant to #32135?
The text was updated successfully, but these errors were encountered: