Skip to content

Commit

Permalink
Use a wheel sieve to improve performance and export primesmask.
Browse files Browse the repository at this point in the history
  • Loading branch information
pabloferz committed Aug 7, 2015
1 parent dcc448b commit f50da30
Show file tree
Hide file tree
Showing 6 changed files with 136 additions and 30 deletions.
6 changes: 6 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -319,6 +319,12 @@ Library improvements

* `isapprox` now has simpler and more sensible default tolerances ([#12393]).

* Numbers

* `primes` is now faster and has been extended to generate the primes in a user defined closed interval ([#12025]).

* The function `primesmask` which generates a prime sieve for a user defined closed interval is now exported ([#12025]).

* Random numbers

* Streamlined random number generation APIs [#8246].
Expand Down
14 changes: 12 additions & 2 deletions base/docs/helpdb.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2947,13 +2947,23 @@ isapprox
doc"""
```rst
::
primes(n)
primes([lo,] hi)
Returns a collection of the prime numbers <= ``n``.
Returns a collection of the prime numbers (from ``lo``, if specified) up to ``hi``.
```
"""
primes

doc"""
```rst
::
primesmask([lo,] hi)
Returns a prime sieve, as a ``BitArray``, of the positive integers (from ``lo``, if specified) up to ``hi``. Useful when working with either primes or composite numbers.
```
"""
primesmask

doc"""
```rst
::
Expand Down
1 change: 1 addition & 0 deletions base/exports.jl
Original file line number Diff line number Diff line change
Expand Up @@ -415,6 +415,7 @@ export
prevpow2,
prevprod,
primes,
primesmask,
rad2deg,
rationalize,
real,
Expand Down
131 changes: 107 additions & 24 deletions base/primes.jl
Original file line number Diff line number Diff line change
@@ -1,36 +1,119 @@
# This file is a part of Julia. License is MIT: http://julialang.org/license

# Sieve of Atkin for generating primes:
# https://en.wikipedia.org/wiki/Sieve_of_Atkin
# Code very loosely based on this:
# http://thomasinterestingblog.wordpress.com/2011/11/30/generating-primes-with-the-sieve-of-atkin-in-c/
# http://dl.dropboxusercontent.com/u/29023244/atkin.cpp
#
function primesmask(s::AbstractVector{Bool})
n = length(s)
n < 2 && return s; s[2] = true
n < 3 && return s; s[3] = true
r = isqrt(n)
for x = 1:r
xx = x*x
for y = 1:r
yy = y*y
i, j, k = 4xx+yy, 3xx+yy, 3xx-yy
i <= n && (s[i] $= (i%12==1)|(i%12==5))
j <= n && (s[j] $= (j%12==7))
1 <= k <= n && (s[k] $= (x>y)&(k%12==11))
# Primes generating functions
# https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
# https://en.wikipedia.org/wiki/Wheel_factorization
# http://primesieve.org
# Jonathan Sorenson, "An analysis of two prime number sieves", Computer Science Technical Report Vol. 1028, 1991
const wheel = [4, 2, 4, 2, 4, 6, 2, 6]
const wheel_primes = [7, 11, 13, 17, 19, 23, 29, 31]
const wheel_indices = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7 ]

@inline wheel_index(n) = ( (d, r) = divrem(n - 1, 30); return 8d + wheel_indices[r+1] )
@inline wheel_prime(n) = ( (d, r) = ((n - 1) >>> 3, (n - 1) & 7); return 30d + wheel_primes[r+1] )

function _primesmask(limit::Int)
limit < 7 && throw(ArgumentError("limit must be at least 7, got $limit"))
n = wheel_index(limit)
m = wheel_prime(n)
sieve = ones(Bool, n)
@inbounds for i = 1:wheel_index(isqrt(limit))
if sieve[i]; p = wheel_prime(i)
q = p * p
j = (i - 1) & 7 + 1
while q m
sieve[wheel_index(q)] = false
q = q + wheel[j] * p
j = j & 7 + 1
end
end
end
for i = 5:r
s[i] && (s[i*i:i*i:n] = false)
return sieve
end

function _primesmask(lo::Int, hi::Int)
7 lo hi || throw(ArgumentError("the condition 7 ≤ lo ≤ hi must be met"))
lo == 7 && return _primesmask(hi)
wlo, whi = wheel_index(lo - 1), wheel_index(hi)
m = wheel_prime(whi)
sieve = ones(Bool, whi - wlo)
small_primes = primes(isqrt(hi))
@inbounds for i in 4:length(small_primes)
p = small_primes[i]
j = wheel_index(2 * div(lo - p - 1, 2p) + 1)
q = p * wheel_prime(j + 1); j = j & 7 + 1
while q m
sieve[wheel_index(q)-wlo] = false
q = q + wheel[j] * p
j = j & 7 + 1
end
end
return sieve
end

# Sieve of the primes up to limit represented as an array of booleans
function primesmask(limit::Int)
limit < 1 && throw(ArgumentError("limit must be at least 1, got $limit"))
sieve = falses(limit)
limit < 2 && return sieve; sieve[2] = true
limit < 3 && return sieve; sieve[3] = true
limit < 5 && return sieve; sieve[5] = true
limit < 7 && return sieve
wheel_sieve = _primesmask(limit)
@inbounds for i in eachindex(wheel_sieve)
Base.unsafe_setindex!(sieve, wheel_sieve[i], wheel_prime(i))
end
return s
return sieve
end
primesmask(n::Int) = primesmask(falses(n))
primesmask(n::Integer) = n <= typemax(Int) ? primesmask(Int(n)) :
throw(ArgumentError("requested number of primes must be ≤ $(typemax(Int)), got $n"))

primes(n::Union{Integer,AbstractVector{Bool}}) = find(primesmask(n))
function primesmask(lo::Int, hi::Int)
0 < lo hi || throw(ArgumentError("the condition 0 < lo ≤ hi must be met"))
sieve = falses(hi - lo + 1)
lo 2 hi && (sieve[3-lo] = true)
lo 3 hi && (sieve[4-lo] = true)
lo 5 hi && (sieve[6-lo] = true)
hi < 7 && return sieve
wheel_sieve = _primesmask(max(7, lo), hi)
lsi = lo - 1
lwi = wheel_index(lsi)
@inbounds for i in eachindex(wheel_sieve)
Base.unsafe_setindex!(sieve, wheel_sieve[i], wheel_prime(i + lwi) - lsi)
end
return sieve
end
primesmask{T<:Integer}(lo::T, hi::T) = lo <= hi <= typemax(Int) ? primesmask(Int(lo), Int(hi)) :
throw(ArgumentError("both endpoints of the interval to sieve must be ≤ $(typemax(Int)), got $lo and $hi"))

function primes(n::Int)
list = Int[]
n < 2 && return list; push!(list, 2)
n < 3 && return list; push!(list, 3)
n < 5 && return list; push!(list, 5)
n < 7 && return list
sizehint!(list, floor(Int, n / log(n)))
sieve = _primesmask(n)
@inbounds for i in eachindex(sieve)
sieve[i] && push!(list, wheel_prime(i))
end
return list
end

function primes(lo::Int, hi::Int)
lo hi || throw(ArgumentError("the condition lo ≤ hi must be met"))
list = Int[]
lo 2 hi && push!(list, 2)
lo 3 hi && push!(list, 3)
lo 5 hi && push!(list, 5)
hi < 7 && return list
sieve = _primesmask(max(7, lo), hi)
lwi = wheel_index(lo - 1)
@inbounds for i in eachindex(sieve)
sieve[i] && push!(list, wheel_prime(i + lwi))
end
return list
end

const PRIMES = primes(2^16)

Expand Down
4 changes: 2 additions & 2 deletions doc/stdlib/numbers.rst
Original file line number Diff line number Diff line change
Expand Up @@ -445,9 +445,9 @@ Integers
julia> isprime(big(3))
true

.. function:: primes(n)
.. function:: primes([lo,] hi)

Returns a collection of the prime numbers <= ``n``.
.. function:: primesmask([lo,] hi)

.. function:: isodd(x::Integer) -> Bool

Expand Down
10 changes: 8 additions & 2 deletions test/numbers.jl
Original file line number Diff line number Diff line change
Expand Up @@ -1978,7 +1978,7 @@ for f in (trunc, round, floor, ceil)

# primes

@test Base.primes(10000) == [
@test primes(10000) == primes(2, 10000) == [
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151,
157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233,
Expand Down Expand Up @@ -2080,16 +2080,22 @@ for f in (trunc, round, floor, ceil)
9851, 9857, 9859, 9871, 9883, 9887, 9901, 9907, 9923, 9929, 9931, 9941,
9949, 9967, 9973 ]

for n = 100:100:1000
@test primes(n, 10n) == primes(10n)[length(primes(n))+1:end]
@test primesmask(n, 10n) == primesmask(10n)[n:end]
end

for T in [Int,BigInt], n = [1:1000;1000000]
n = convert(T,n)
f = factor(n)
@test n == prod(T[p^k for (p,k)=f])
prime = n!=1 && length(f)==1 && get(f,n,0)==1
@test isprime(n) == prime

s = Base.primesmask(n)
s = primesmask(n)
for k = 1:n
@test s[k] == isprime(k)
@test s[k] == primesmask(k, k)[1]
end
end

Expand Down

0 comments on commit f50da30

Please sign in to comment.