Skip to content

Commit

Permalink
allow PermutedDimsArray in gemm_strided_batched
Browse files Browse the repository at this point in the history
  • Loading branch information
Michael Abbott committed Oct 24, 2020
1 parent fd59518 commit 3eea8a6
Show file tree
Hide file tree
Showing 4 changed files with 37 additions and 24 deletions.
2 changes: 2 additions & 0 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@ AbstractFFTs = "621f4979-c628-5d54-868e-fcf4e3e8185c"
Adapt = "79e6a3ab-5dfb-504d-930d-738a2a938a0e"
BFloat16s = "ab4f0b2a-ad5b-11e8-123f-65d77653426b"
CEnum = "fa961155-64e5-5f13-b03f-caf6b980ea82"
Compat = "34da2185-b29b-5c13-b0c7-acf172513d20"
DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
ExprTools = "e2ba6199-217a-4e67-a87a-7c52f15ade04"
GPUArrays = "0c68f7d7-f131-5f86-a1c3-88cf8149b2d7"
Expand All @@ -31,6 +32,7 @@ AbstractFFTs = "0.4, 0.5"
Adapt = "2.2"
BFloat16s = "0.1"
CEnum = "0.2, 0.3, 0.4"
Compat = "3.9"
DataStructures = "0.17, 0.18"
ExprTools = "0.1"
GPUArrays = "6.1.0"
Expand Down
25 changes: 13 additions & 12 deletions lib/cublas/wrappers.jl
Original file line number Diff line number Diff line change
Expand Up @@ -923,15 +923,16 @@ for (fname, elty) in
function gemm_strided_batched!(transA::Char,
transB::Char,
alpha::Number,
A::DenseCuArray{$elty, 3},
B::DenseCuArray{$elty, 3},
A::AbstractArray{$elty, 3},
B::AbstractArray{$elty, 3},
beta::Number,
C::DenseCuArray{$elty, 3})
C::AbstractArray{$elty, 3})
m = size(A, transA == 'N' ? 1 : 2)
k = size(A, transA == 'N' ? 2 : 1)
n = size(B, transB == 'N' ? 2 : 1)

@assert size(A, 3) == size(B, 3) == size(C, 3) "Batch size mismatch"
@assert size(A, 3) == size(C, 3) || size(A, 3) == 1 "batch size mismatch: A != C"
@assert size(B, 3) == size(C, 3) || size(B, 3) == 1 "batch size mismatch: B != C"

if m != size(C,1) || n != size(C,2) || k != size(B, transB == 'N' ? 1 : 2)
throw(DimensionMismatch(""))
Expand All @@ -940,26 +941,26 @@ for (fname, elty) in
ldb = max(1,stride(B,2))
ldc = max(1,stride(C,2))

strideA = stride(A, 3)
strideB = stride(B, 3)
strideA = size(A, 3) == 1 ? 0 : stride(A, 3)
strideB = size(B, 3) == 1 ? 0 : stride(B, 3)
strideC = stride(C, 3)
batchCount = size(A, 3)
batchCount = size(C, 3)
$fname(handle(), transA, transB, m, n, k, alpha, A, lda, strideA, B,
ldb, strideB, beta, C, ldc, strideC, batchCount)
C
end
function gemm_strided_batched(transA::Char,
transB::Char,
alpha::Number,
A::DenseCuArray{$elty, 3},
B::DenseCuArray{$elty, 3})
C = similar(B, (size(A, transA == 'N' ? 1 : 2), size(B, transB == 'N' ? 2 : 1), size(A, 3)))
A::AbstractArray{$elty, 3},
B::AbstractArray{$elty, 3})
C = similar(B, (size(A, transA == 'N' ? 1 : 2), size(B, transB == 'N' ? 2 : 1), max(size(A, 3), size(B, 3))))
gemm_strided_batched!(transA, transB, alpha, A, B, zero($elty), C )
end
function gemm_strided_batched(transA::Char,
transB::Char,
A::DenseCuArray{$elty, 3},
B::DenseCuArray{$elty, 3})
A::AbstractArray{$elty, 3},
B::AbstractArray{$elty, 3})
gemm_strided_batched(transA, transB, one($elty), A, B)
end
end
Expand Down
15 changes: 3 additions & 12 deletions src/nnlib.jl
Original file line number Diff line number Diff line change
Expand Up @@ -23,16 +23,7 @@ end


# Batched matrix multiplication
# Using storage_type from https://github.com/FluxML/NNlib.jl/pull/191

const batched_gemm_args = [
(:(CuArray{T, 3}), 'N'),
(:(NNlib.BatchedTranspose{T, <:CuArray{T, 3}}), 'T'),
(:(NNlib.BatchedAdjoint{T, <:CuArray{T, 3}}), 'C')
]

for (TA, transA) in batched_gemm_args, (TB, transB) in batched_gemm_args
@eval function NNlib.batched_mul!(C::CuArray{T, 3}, A::$TA, B::$TB) where {T<:CUBLAS.CublasFloat}
CUBLAS.gemm_strided_batched!($transA, $transB, one(T), NNlib._unbatch(A), NNlib._unbatch(B), zero(T), C)
C
end
end
NNlib._batched_gemm!(::Type{<:CuArray}, transA::Char, transB::Char, α::Number, A, B, β::Number, C) =
CUBLAS.gemm_strided_batched!(transA, transB, α, A, B, β, C)
19 changes: 19 additions & 0 deletions test/nnlib.jl
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,25 @@ using NNlib
@test CuArray(Ca) batched_mul(CuArray(A), batched_adjoint(CuArray(B)))
end

@testset "NNlib storage_type etc." begin
using LinearAlgebra
using NNlib: is_strided, are_strided, storage_type

M = cu(ones(10,10))

@test is_strided(M)
@test is_strided(view(M, 1:2:5,:))
@test is_strided(PermutedDimsArray(M, (2,1)))

@test !is_strided(reshape(view(M, 1:2:10,:), 10,:))
@test !is_strided((M .+ im)')
@test !is_strided(Diagonal(cu(ones(3))))

@test storage_type(M) == CuArray{Float32,2,Nothing}
@test storage_type(reshape(view(M, 1:2:10,:), 10,:)) == CuArray{Float32,2,Nothing}

end

@testset "Broadcast Fix" begin
if CUDA.has_cudnn()
@test testf(x -> logσ.(x), rand(5))
Expand Down

0 comments on commit 3eea8a6

Please sign in to comment.