Skip to content

(ICCV 2023) ActorsNeRF: Animatable Few-shot Human Rendering with Generalizable NeRFs

License

Notifications You must be signed in to change notification settings

JitengMu/ActorsNeRF

Repository files navigation

ActorsNeRF: Animatable Few-shot Human Rendering with Generalizable NeRFs (ICCV 2023)

ActorsNeRF: Animatable Few-shot Human Rendering with Generalizable NeRFs (ICCV 2023)
JitengMu, Shen Sang, Nuno Vasconcelos, Xiaolong Wang
ICCV 2023

The project page with more details is at https://jitengmu.github.io/ActorsNeRF/.

Citation

If you find our code or method helpful, please use the following BibTex entry.

@article{mu2023actorsnerf,
  author    = {Jiteng Mu and
               Shen Sang and
               Nuno Vasconcelos and
               Xiaolong Wang},
  title     = {ActorsNeRF: Animatable Few-shot Human Rendering with Generalizable NeRFs},
  booktitle = {ICCV},
  pages = {18345--18355},
  year      = {2023},
}

This is an official implementation. The codebase is implemented using PyTorch and tested on Ubuntu 20.04.4 LTS.

Prerequisite

Environment

Install Miniconda (recommended) or Anaconda.

Create and activate a virtual environment.

conda create --name actorsnerf python=3.7
conda activate actorsnerf

Install the required packages.

conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=11.3 -c pytorch -c conda-forge
pip install -r requirements.txt

Dataset

We follow HumanNeRF to preprocess the ZJU-Dataset and AIST++ Dataset. Please download the dataset from ZJU-MoCap Dataset and AIST++ Dataset accordingly. We follow Nueral Body and HumanNeRF to preprocess datasets and we provide our preprocessing scripts under tools/. Please contact the authors Jiteng Mu ([email protected]) for the processed dataset. The dataset is put under ./datasets and organized as following,

datasets/
    zju_mocap/
        lbs/
        new_vertices/
        313/
            0/
                cameras.pkl
                canonical_joints.pkl
                images
                masks
                mesh_infos.pkl
            1/
                cameras.pkl
                canonical_joints.pkl
                images
                masks
                mesh_infos.pkl
            ...
        315/
        ...
    AIST_mocap
        lbs/
        new_vertices/
        d01/
            0/
                cameras.pkl
                canonical_joints.pkl
                images
                masks
                mesh_infos.pkl
            1/
                cameras.pkl
                canonical_joints.pkl
                images
                masks
                mesh_infos.pkl
            ...
        d02/
        ...

Training and Inference

1. Category-level Training

For ZJU-MoCap Dataset,

python3 train.py --cfg configs/actorsnerf/zju_mocap/zju_category_level-pretrain.yaml

For AIST++ Dataset,

python3 train.py --cfg configs/actorsnerf/AIST_mocap/AIST_category_level-pretrain.yaml

2. Few-shot Optimization

For ZJU-Mocap Dataset, 10-shot setting on actor 387,

python3 train.py --cfg configs/actorsnerf/zju_mocap/387/zju_387-10_shot-skip30.yaml

For AIST++ Dataset, 30-shot setting on actor d20,

python3 train.py --cfg configs/actorsnerf/AIST_mocap/d20/AIST_d20-10_shot-skip30.yaml

You may find config files for other settings under configs/actorsnerf

3. Evaluation and Rendering on novel views and poses

Run free-viewpoint rendering on novel views and novel poses. The following script will run evaluation on actor d20 under the 10-shot setting. Results are saved to experiments/actorsnerf/AIST_mocap/d20/AIST_d20-10_shot-skip30/ by default.

python eval.py --type eval_novel_view --cfg configs/actorsnerf/AIST_mocap/d20/AIST_d20-10_shot-skip30.yaml

Please download the checkpoints, where we also provide the produced images.

Acknowledgement

The implementation took reference from HumanNeRF, Neural Body, LPIPS. We thank the authors for their generosity to release code.

About

(ICCV 2023) ActorsNeRF: Animatable Few-shot Human Rendering with Generalizable NeRFs

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages