Releases: JCVenterInstitute/NSForest
NS-Forest v4.0_dev
[Release Note:] Pre-release of NS-Forest v4.0.
Dev version of NS-Forest v4.0
Follow the tutorial to get started.
Download 'NSForest_v4dot0_dev.py' and replace the version in the tutorial. Sample code below.
adata_median = preprocessing_medians(adata, cluster_header)
adata_median.varm["medians_" + cluster_header].stack().plot.hist(bins=30, title = 'cluster medians')
adata_median_binary = preprocessing_binary(adata_median, cluster_header, "medians_" + cluster_header)
adata_median_binary.varm["binary_scores_" + cluster_header].stack().plot.hist(bins=30, title='binary scores')
## make a copy of prepared adata
adata_prep = adata_median_binary.copy()
NSForest(adata_prep, cluster_header=cluster_header, n_trees=1000, n_genes_eval=6,
medians_header = "medians_" + cluster_header, binary_scores_header = "binary_scores_" + cluster_header,
gene_selection = "BinaryFirst_high", outputfilename="BinaryFirst_high")
Full Changelog: v3.9...v4.0_dev
NS-Forest v3.9
[Release Note:] Major code optimizations based on algorithm v3.0. No algorithmic change to v3.0.
Changes of parameter name from v3.0
[old name] = [new name]
threads = n_jobs
howManyInformativeGenes2test = n_top_genes
InformativeGenes = n_binary_genes
clusterLabelcolumnHeader = cluster_header
rfTrees = n_trees
Median_Expression_Level = median_cutoff = 0 #set to 0
Genes_to_testing = n_genes_eval
dataDummy = df_dummies
column = cl
Download and installation
NS-Forest can be installed using pip
:
sudo pip install nsforest
If you are using a machine on which you lack administrative access, NS-Forest can be installed locally using pip
:
pip install --user nsforest
NS-Forest can also be installed using conda
:
conda install -c ttl074 nsforest
Will be uploaded to official conda channel soon.
Prerequisites:
- This is a python script written and tested in python 3.8, scanpy 1.8.2, anndata 0.8.0.
- Other required libraries: numpy, pandas, sklearn, itertools, time, tqdm.
Tutorial
Follow the tutorial to get started.
If you download 'NSForest_v3dot9_2.py' directly, replace the version to the most updated one in the tutorial.
If you download the pip
or conda
package, use the following in the tutorial.
import nsforest as ns
ns.NSForest()
Versions and citations
Earlier versions are managed in Releases.
Version 2 and beyond:
Aevermann BD, Zhang Y, Novotny M, Keshk M, Bakken TE, Miller JA, Hodge RD, Lelieveldt B, Lein ES, Scheuermann RH. A machine learning method for the discovery of minimum marker gene combinations for cell-type identification from single-cell RNA sequencing. Genome Res. 2021 Jun 4:gr.275569.121. doi: 10.1101/gr.275569.121.
Version 1.3/1.0:
Aevermann BD, Novotny M, Bakken T, Miller JA, Diehl AD, Osumi-Sutherland D, Lasken RS, Lein ES, Scheuermann RH. Cell type discovery using single-cell transcriptomics: implications for ontological representation. Hum Mol Genet. 2018 May 1;27(R1):R40-R47. doi: 10.1093/hmg/ddy100.
Authors
- Yun (Renee) Zhang [email protected]
- Richard Scheuermann [email protected]
- Brian Aevermann [email protected]
License
This project is licensed under the MIT License.
Acknowledgments
- BICCN
- Allen Institute of Brain Science
- Chan Zuckerberg Initiative
- California Institute for Regenerative Medicine
What's Changed
New Contributors
Full Changelog: v3.0...v3.9
NS-Forest v3.0
[Release note:] New version of NS-Forest is redeveloped to operate directly on a scanpy object. The algorithm is essentially the same, and in testing returns identical results to NS-Forest v2.0 when the same parameters are used.
Necessary and Sufficient Forest (NS-Forest) for Cell Type Marker Determination from cell type clusters
Getting Started
Install python 3.6 or above. Download NSForest_v3.py file
Prerequisites
- This is a python script written in python 3.6. Required libraries: Numpy, Pandas, Sklearn, graphviz, numexpr, scanpy
- scanpy object (adata) with at least one column containing the cluster assignments. Default slot set to adata.obs["louvain"]; however parameter is tunable in function call.
Using NS-Forest v3.0
from NSForest_v3 import *
import itertools
adata_markers = NS_Forest(adata) #Runs NS_Forest on scanpy object
Markers = list(itertools.chain.from_iterable(adata_markers['NSForest_Markers'])) #gets list of minimal markers from dataframe for display in scanpy plotting functions
Binary_Markers = list(itertools.chain.from_iterable(adata_markers['Binary_Genes'])) #gets list of binary markers from dataframe for display in scanpy plotting functions
NS-Forest v3.0 parameters
NS_Forest(adata, clusterLabelcolumnHeader = "louvain", rfTrees = 1000, Median_Expression_Level = 0, Genes_to_testing = 6, betaValue = 0.5)
- adata = scanpy object
- rfTrees = Number of trees
- clusterLabelcolumnHeader = column header in adata.obs['header_here!'] where cluster assignments reside. Typically 'louvain' if louvain clustering was used.
- Median_Expression_Level = median expression level for removing negative markers
- Genes_to_testing = How many ranked genes by binary score will be evaluated in permutations by fbeta-score
- betaValue = Set values for fbeta weighting. 1 is default f-measure. close to zero is Precision, greater than 1 weights toward Recall
Description
Necessary and Sufficient Forest is a method that takes cluster results from single cell/nuclei RNAseq experiments
and generates lists of minimal markers needed to define each “cell type cluster”.
The method begins by re-encoding the cluster labels into binary classifications, and Random Forest models are generated comparing each
cluster versus all. The top fifteen genes are then reranked using a score measuring how binary they are, e.g., a gene with expression in
the target cluster but no expression in the other clusters would have a high binary score. Expression cutoffs for the top six genes ranked
by binary score are then determined by generating individual decision trees and extracting the decision path information. Then all combinations
of the top six most binary genes are evaluated using f-beta score as an objective function (the beta value default set at 0.5, which weights the
f-measure score more toward precision as opposed to recall).
See code for detailed comments.
Versioning
This is version 3.0 The earlier releases were described in the below publications.
Version 2
Aevermann BD, Zhang Y, Novotny M, Keshk M, Bakken TE, Miller JA, Hodge RD, Lelieveldt B, Lein ES, Scheuermann RH. A machine learning method for the discovery of minimum marker gene combinations for cell-type identification from single-cell RNA sequencing. Genome Res. 2021 Jun 4:gr.275569.121. doi: 10.1101/gr.275569.121. Epub ahead of print. PMID: 34088715.
version 1.3/1.0:
Aevermann BD, Novotny M, Bakken T, Miller JA, Diehl AD, Osumi-Sutherland D, Lasken RS, Lein ES, Scheuermann RH.
Cell type discovery using single-cell transcriptomics: implications for ontological representation.
Hum Mol Genet. 2018 May 1;27(R1):R40-R47. doi: 10.1093/hmg/ddy100.
Authors
- Brian Aevermann [email protected] and Richard Scheuermann [email protected]
License
This project is licensed under the MIT License - see the https://opensource.org/licenses/MIT for details
Acknowledgments
- BICCN
- Allen Institute of Brain Science
- Chan Zuckerberg Initiative
- California Institute for Regenerative Medicine
What's Changed
- Solve issue #1 (TypeError: 'NoneType' object is not callable) by @e-sollier in #2
New Contributors
- @e-sollier made their first contribution in #2
Full Changelog: v2.0...v3.0
NS-Forest v2.0
Necessary and Sufficient Forest (NS-Forest) for Cell Type Marker Determination from cell type clusters
Getting Started
Install Jupyter notebook and python 2.7
Prerequisites
- The script is a Jupyter notebook in python 2.7. Required libraries: Numpy, Pandas, Sklearn, graphviz, numexpr
- The input data is a tab delimited expression Cell x Gene matrix with one column containing the cluster assignments
- The cluster-label column must be named "Clusters" and the labels must be non-numeric (if currently numbers, please add "Cl" or any text would work).
- The gene identifiers used must avoid special characters such as ./-/@ or beginning with numbers (I prefix identifiers beginning with numbers and substitute all special characters with "_")
Description
Necessary and Sufficient Forest is a method that takes cluster results from single cell/nuclei RNAseq experiments
and generates lists of minimal markers needed to define each “cell type cluster”.
The method begins by re-encoding the cluster labels into binary classifications, and Random Forest models are generated comparing each
cluster versus all. The top fifteen genes are then reranked using a score measuring how binary they are, e.g., a gene with expression in
the target cluster but no expression in the other clusters would have a high binary score. Expression cutoffs for the top six genes ranked
by binary score are then determined by generating individual decision trees and extracting the decision path information. Then all permutations
of the top six most binary genes are evaluated using f-beta score as an objective function (the beta value default set at 0.5, which weights the
f-measure score more toward precision as opposed to recall).
See code for detailed comments.
Versioning
This is version 2.0 The initial release was version 1.3. Version 1.0 was described in:
Aevermann BD, Novotny M, Bakken T, Miller JA, Diehl AD, Osumi-Sutherland D, Lasken RS, Lein ES, Scheuermann RH.
Cell type discovery using single-cell transcriptomics: implications for ontological representation.
Hum Mol Genet. 2018 May 1;27(R1):R40-R47. doi: 10.1093/hmg/ddy100.
Authors
- Brian Aevermann [email protected] and Richard Scheuermann [email protected]
License
This project is licensed under the MIT License - see the LICENSE.md file for details
Acknowledgments
- Allen Institute of Brain Science
- Chan Zuckerberg Initiative
- California Institute for Regenerative Medicine
NS-Forest v1.3
Necessary and Sufficient Forest (NS-Forest) for Cell Type Marker Determination from cell type clusters
Getting Started
Install Jupyter notebook and python 2.7
Prerequisites
- The script is a Jupyter notebook in python 2.7. Required libraries: Numpy, Pandas, Sklearn, graphviz, numexpr
- The input data is a tab delimited expression Cell x Gene matrix with one column containing the cluster assignments
- The cluster-label column must be named "Clusters" and the labels must be non-numeric (if currently numbers, please add "Cl" or any text would work).
- The gene identifiers used must avoid special characters such as ./-/@ or beginning with numbers (I prefix identifiers beginning with numbers and substitute all special characters with "_")
Description
Necessary and Sufficient Forest is a method that takes cluster results from single cell/nuclei RNAseq experiments
and generates lists of minimal markers needed to define each “cell type cluster”.
The method begins by re-encoding the cluster labels into binary classifications, and Random Forest models are generated comparing each
cluster versus all. The top ten ranked features from the Random Forest are then tested using f-measure as an objective function.
For example, during the first step all top ten features are independently evaluated for their discriminatory power at an
expression value where 75% of the cells have greater than or equal expression. Given that 25% of the cells are lost de facto,
the maximum f-measure for the first step is estimated to be around 0.87 (there will be cases where its higher or lower, such
as having equal expression across all cells). After the best f-measure is found classifying with one gene than the remaining
nine genes are tested in combination with the top first gene, again using an expression value where 75% of the cells have expression.
After the best pair of genes is found, the remaining 8 genes are tested in third position, and onward until the analysis reaches
6 combinations.
See code for detailed comments.
Versioning
The initial release is version 1.3. Version 1.0 was described in:
Aevermann BD, Novotny M, Bakken T, Miller JA, Diehl AD, Osumi-Sutherland D, Lasken RS, Lein ES, Scheuermann RH.
Cell type discovery using single-cell transcriptomics: implications for ontological representation.
Hum Mol Genet. 2018 May 1;27(R1):R40-R47. doi: 10.1093/hmg/ddy100.
Authors
- Brian Aevermann [email protected] and Richard Scheuermann [email protected]
License
This project is licensed under the MIT License - see the LICENSE.md file for details
Acknowledgments
- Allen Institute of Brain Science
- Chan Zuckerberg Initiative
- California Institute for Regenerative Medicine