Project page | Paper | Data
This is the official repo for the implementation of RENI: A Rotation-Equivariant Natural Illumination Model.
If you use our code, please cite the following paper:
@inproceedings{
gardner2022rotationequivariant,
title={Rotation-Equivariant Conditional Spherical Neural Fields for Learning a Natural Illumination Prior},
author={James A D Gardner and Bernhard Egger and William A P Smith},
booktitle={Advances in Neural Information Processing Systems},
editor={Alice H. Oh and Alekh Agarwal and Danielle Belgrave and Kyunghyun Cho},
year={2022},
url={https://openreview.net/forum?id=cj6K4IWVomU}
}
27/11/2023: Checkout our improved model RENI++: A Rotation-Equivariant, Scale-Invariant, Natural Illumination Prior here
01/11/2022: Updated code! Now implemented using PyTorch-Lightning. Refactored code makes training and using RENI in downstream tasks easier.
15/09/2022: Accepted to NeurIPS 2022!!!
1. Clone this repository:
git clone https://github.com/JADGardner/RENI.git
2. Setup conda environment:
cd RENI
conda env create -f environment.yml
conda activate reni
4. You can download the RENI dataset and pre-trained models using setup.py
python setup.py
5. You can train a RENI from scratch by setting the hyperparameters in configs/experiment.yaml and running the run.py script:
python run.py --cfg_path configs/experiment.yaml --gpus '0, 1, 2, 3'
6. The example notebook demonstrates using a pre-trained RENI in a downstream task as a prior for environment map in-painting.