Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

bump version to v0.7.0.post3 #3115

Merged
merged 1 commit into from
Feb 10, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 2 additions & 9 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@ ______________________________________________________________________

## Latest News 🎉

<details open>
<details close>
<summary><b>2024</b></summary>

- \[2024/11\] Support Mono-InternVL with PyTorch engine
Expand Down Expand Up @@ -91,14 +91,6 @@ LMDeploy is a toolkit for compressing, deploying, and serving LLM, developed by

![v0 1 0-benchmark](https://github.com/InternLM/lmdeploy/assets/4560679/8e455cf1-a792-4fa8-91a2-75df96a2a5ba)

For detailed inference benchmarks in more devices and more settings, please refer to the following link:

- [A100](./docs/en/benchmark/a100_fp16.md)
- V100
- 4090
- 3090
- 2080

# Supported Models

<table>
Expand Down Expand Up @@ -160,6 +152,7 @@ For detailed inference benchmarks in more devices and more settings, please refe
<li>DeepSeek-VL (7B)</li>
<li>InternVL-Chat (v1.1-v1.5)</li>
<li>InternVL2 (1B-76B)</li>
<li>InternVL2.5(MPO) (1B-78B)</li>
<li>Mono-InternVL (2B)</li>
<li>ChemVLM (8B-26B)</li>
<li>MiniGeminiLlama (7B)</li>
Expand Down
10 changes: 2 additions & 8 deletions README_ja.md
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@ ______________________________________________________________________

## 最新ニュース 🎉

<details open>
<details close>
<summary><b>2024</b></summary>

- \[2024/08\] 🔥🔥 LMDeployは[modelscope/swift](https://github.com/modelscope/swift)に統合され、VLMs推論のデフォルトアクセラレータとなりました
Expand Down Expand Up @@ -89,13 +89,6 @@ LMDeploy TurboMindエンジンは卓越した推論能力を持ち、さまざ

![v0 1 0-benchmark](https://github.com/InternLM/lmdeploy/assets/4560679/8e455cf1-a792-4fa8-91a2-75df96a2a5ba)

詳細な推論ベンチマークについては、以下のリンクを参照してください:

- [A100](./docs/en/benchmark/a100_fp16.md)
- 4090
- 3090
- 2080

# サポートされているモデル

<table>
Expand Down Expand Up @@ -156,6 +149,7 @@ LMDeploy TurboMindエンジンは卓越した推論能力を持ち、さまざ
<li>DeepSeek-VL (7B)</li>
<li>InternVL-Chat (v1.1-v1.5)</li>
<li>InternVL2 (1B-76B)</li>
<li>InternVL2.5(MPO) (1B-78B)</li>
<li>Mono-InternVL (2B)</li>
<li>ChemVLM (8B-26B)</li>
<li>MiniGeminiLlama (7B)</li>
Expand Down
10 changes: 2 additions & 8 deletions README_zh-CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@ ______________________________________________________________________

## 最新进展 🎉

<details open>
<details close>
<summary><b>2024</b></summary>

- \[2024/11\] PyTorch engine 支持 Mono-InternVL 模型
Expand Down Expand Up @@ -93,13 +93,6 @@ LMDeploy TurboMind 引擎拥有卓越的推理能力,在各种规模的模型

![v0 1 0-benchmark](https://github.com/InternLM/lmdeploy/assets/4560679/8e455cf1-a792-4fa8-91a2-75df96a2a5ba)

更多设备、更多计算精度、更多setting下的的推理 benchmark,请参考以下链接:

- [A100](./docs/en/benchmark/a100_fp16.md)
- 4090
- 3090
- 2080

# 支持的模型

<table>
Expand Down Expand Up @@ -161,6 +154,7 @@ LMDeploy TurboMind 引擎拥有卓越的推理能力,在各种规模的模型
<li>DeepSeek-VL (7B)</li>
<li>InternVL-Chat (v1.1-v1.5)</li>
<li>InternVL2 (1B-76B)</li>
<li>InternVL2.5(MPO) (1B-78B)</li>
<li>Mono-InternVL (2B)</li>
<li>ChemVLM (8B-26B)</li>
<li>MiniGeminiLlama (7B)</li>
Expand Down
2 changes: 1 addition & 1 deletion docs/en/get_started/installation.md
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@ pip install lmdeploy
The default prebuilt package is compiled on **CUDA 12**. If CUDA 11+ (>=11.3) is required, you can install lmdeploy by:

```shell
export LMDEPLOY_VERSION=0.7.0.post2
export LMDEPLOY_VERSION=0.7.0.post3
export PYTHON_VERSION=38
pip install https://github.com/InternLM/lmdeploy/releases/download/v${LMDEPLOY_VERSION}/lmdeploy-${LMDEPLOY_VERSION}+cu118-cp${PYTHON_VERSION}-cp${PYTHON_VERSION}-manylinux2014_x86_64.whl --extra-index-url https://download.pytorch.org/whl/cu118
```
Expand Down
2 changes: 1 addition & 1 deletion docs/zh_cn/get_started/installation.md
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@ pip install lmdeploy
默认的预构建包是在 **CUDA 12** 上编译的。如果需要 CUDA 11+ (>=11.3),你可以使用以下命令安装 lmdeploy:

```shell
export LMDEPLOY_VERSION=0.7.0.post2
export LMDEPLOY_VERSION=0.7.0.post3
export PYTHON_VERSION=38
pip install https://github.com/InternLM/lmdeploy/releases/download/v${LMDEPLOY_VERSION}/lmdeploy-${LMDEPLOY_VERSION}+cu118-cp${PYTHON_VERSION}-cp${PYTHON_VERSION}-manylinux2014_x86_64.whl --extra-index-url https://download.pytorch.org/whl/cu118
```
Expand Down
2 changes: 1 addition & 1 deletion lmdeploy/version.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Tuple

__version__ = '0.7.0.post2'
__version__ = '0.7.0.post3'
short_version = __version__


Expand Down