We suggest putting all datasets under the same folder (say $DATA
) to ease management and following the instructions below to organize datasets to avoid modifying the source code. The file structure looks like
$DATA/
|–– imagenet/
|–– caltech-101/
|–– oxford_pets/
|–– stanford_cars/
If you have some datasets already installed somewhere else, you can create symbolic links in $DATA/dataset_name
that point to the original data to avoid duplicate download.
Datasets list:
The instructions to prepare each dataset are detailed below. To ensure reproducibility and fair comparison for future work, we utilize CoOp-style train/val/test splits for all datasets except ImageNet where the validation set is used as test set.
- Create a folder named
imagenet/
under$DATA
. - Create
images/
underimagenet/
. - Download the dataset from the official website and extract the training and validation sets to
$DATA/imagenet/images
. The directory structure should look like
imagenet/
|–– images/
| |–– train/ # contains 1,000 folders like n01440764, n01443537, etc.
| |–– val/
- If you had downloaded the ImageNet dataset before, you can create symbolic links to map the training and validation sets to
$DATA/imagenet/images
. - Download the
classnames.txt
to$DATA/imagenet/
from this link. The class names are copied from CLIP.
- Create a folder named
caltech-101/
under$DATA
. - Download
101_ObjectCategories.tar.gz
from http://www.vision.caltech.edu/Image_Datasets/Caltech101/101_ObjectCategories.tar.gz and extract the file under$DATA/caltech-101
. - Download
split_zhou_Caltech101.json
from this link and put it under$DATA/caltech-101
.
The directory structure should look like
caltech-101/
|–– 101_ObjectCategories/
|–– split_zhou_Caltech101.json
- Create a folder named
oxford_pets/
under$DATA
. - Download the images from https://www.robots.ox.ac.uk/~vgg/data/pets/data/images.tar.gz.
- Download the annotations from https://www.robots.ox.ac.uk/~vgg/data/pets/data/annotations.tar.gz.
- Download
split_zhou_OxfordPets.json
from this link.
The directory structure should look like
oxford_pets/
|–– images/
|–– annotations/
|–– split_zhou_OxfordPets.json
- Create a folder named
stanford_cars/
under$DATA
. - Download the train images http://ai.stanford.edu/~jkrause/car196/cars_train.tgz.
- Download the test images http://ai.stanford.edu/~jkrause/car196/cars_test.tgz.
- Download the train labels https://ai.stanford.edu/~jkrause/cars/car_devkit.tgz.
- Download the test labels http://ai.stanford.edu/~jkrause/car196/cars_test_annos_withlabels.mat.
- Download
split_zhou_StanfordCars.json
from this link.
The directory structure should look like
stanford_cars/
|–– cars_test\
|–– cars_test_annos_withlabels.mat
|–– cars_train\
|–– devkit\
|–– split_zhou_StanfordCars.json
- Create a folder named
oxford_flowers/
under$DATA
. - Download the images and labels from https://www.robots.ox.ac.uk/~vgg/data/flowers/102/102flowers.tgz and https://www.robots.ox.ac.uk/~vgg/data/flowers/102/imagelabels.mat respectively.
- Download
cat_to_name.json
from here. - Download
split_zhou_OxfordFlowers.json
from here.
The directory structure should look like
oxford_flowers/
|–– cat_to_name.json
|–– imagelabels.mat
|–– jpg/
|–– split_zhou_OxfordFlowers.json
- Download the dataset from https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/ and extract the file
food-101.tar.gz
under$DATA
, resulting in a folder named$DATA/food-101/
. - Download
split_zhou_Food101.json
from here.
The directory structure should look like
food-101/
|–– images/
|–– license_agreement.txt
|–– meta/
|–– README.txt
|–– split_zhou_Food101.json
- Download the data from https://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/archives/fgvc-aircraft-2013b.tar.gz.
- Extract
fgvc-aircraft-2013b.tar.gz
and keep onlydata/
. - Move
data/
to$DATA
and rename the folder tofgvc_aircraft/
.
The directory structure should look like
fgvc_aircraft/
|–– images/
|–– ... # a bunch of .txt files
- Create a folder named
sun397/
under$DATA
. - Download the images http://vision.princeton.edu/projects/2010/SUN/SUN397.tar.gz.
- Download the partitions https://vision.princeton.edu/projects/2010/SUN/download/Partitions.zip.
- Extract these files under
$DATA/sun397/
. - Download
split_zhou_SUN397.json
from this link.
The directory structure should look like
sun397/
|–– SUN397/
|–– split_zhou_SUN397.json
|–– ... # a bunch of .txt files
- Download the dataset from https://www.robots.ox.ac.uk/~vgg/data/dtd/download/dtd-r1.0.1.tar.gz and extract it to
$DATA
. This should lead to$DATA/dtd/
. - Download
split_zhou_DescribableTextures.json
from this link.
The directory structure should look like
dtd/
|–– images/
|–– imdb/
|–– labels/
|–– split_zhou_DescribableTextures.json
- Create a folder named
eurosat/
under$DATA
. - Download the dataset from http://madm.dfki.de/files/sentinel/EuroSAT.zip and extract it to
$DATA/eurosat/
. - Download
split_zhou_EuroSAT.json
from here.
The directory structure should look like
eurosat/
|–– 2750/
|–– split_zhou_EuroSAT.json
- Create a folder named
ucf101/
under$DATA
. - Download the zip file
UCF-101-midframes.zip
from here and extract it to$DATA/ucf101/
. This zip file contains the extracted middle video frames. - Download
split_zhou_UCF101.json
from this link.
The directory structure should look like
ucf101/
|–– UCF-101-midframes/
|–– split_zhou_UCF101.json