Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

added breadth first search program #722

Open
wants to merge 6 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
92 changes: 92 additions & 0 deletions Advanced/breadth_first_search.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,92 @@
#include<iostream>
#include <list>

using namespace std;

// This class represents a directed graph using
// adjacency list representation
class Graph
{
int V; // No. of vertices

// Pointer to an array containing adjacency
// lists
list<int> *adj;
public:
Graph(int V); // Constructor

// function to add an edge to graph
void addEdge(int v, int w);

// prints BFS traversal from a given source s
void BFS(int s);
};

Graph::Graph(int V)
{
this->V = V;
adj = new list<int>[V];
}

void Graph::addEdge(int v, int w)
{
adj[v].push_back(w); // Add w to v’s list.
}

void Graph::BFS(int s)
{
// Mark all the vertices as not visited
bool *visited = new bool[V];
for(int i = 0; i < V; i++)
visited[i] = false;

// Create a queue for BFS
list<int> queue;

// Mark the current node as visited and enqueue it
visited[s] = true;
queue.push_back(s);

// 'i' will be used to get all adjacent
// vertices of a vertex
list<int>::iterator i;

while(!queue.empty())
{
// Dequeue a vertex from queue and print it
s = queue.front();
cout << s << " ";
queue.pop_front();

// Get all adjacent vertices of the dequeued
// vertex s. If a adjacent has not been visited,
// then mark it visited and enqueue it
for (i = adj[s].begin(); i != adj[s].end(); ++i)
{
if (!visited[*i])
{
visited[*i] = true;
queue.push_back(*i);
}
}
}
}

// Driver program to test methods of graph class
int main()
{
// Create a graph given in the above diagram
Graph g(4);
g.addEdge(0, 1);
g.addEdge(0, 2);
g.addEdge(1, 2);
g.addEdge(2, 0);
g.addEdge(2, 3);
g.addEdge(3, 3);

cout << "Following is Breadth First Traversal "
<< "(starting from vertex 2) \n";
g.BFS(2);

return 0;
}
84 changes: 84 additions & 0 deletions Advanced/depth_first_search_program.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,84 @@
#include<bits/stdc++.h>
using namespace std;

// Graph class represents a directed graph
// using adjacency list representation
class Graph
{
int V; // No. of vertices

// Pointer to an array containing
// adjacency lists
list<int> *adj;

// A recursive function used by DFS
void DFSUtil(int v, bool visited[]);
public:
Graph(int V); // Constructor

// function to add an edge to graph
void addEdge(int v, int w);

// DFS traversal of the vertices
// reachable from v
void DFS(int v);
};

Graph::Graph(int V)
{
this->V = V;
adj = new list<int>[V];
}

void Graph::addEdge(int v, int w)
{
adj[v].push_back(w); // Add w to v’s list.
}

void Graph::DFSUtil(int v, bool visited[])
{
// Mark the current node as visited and
// print it
visited[v] = true;
cout << v << " ";

// Recur for all the vertices adjacent
// to this vertex
list<int>::iterator i;
for (i = adj[v].begin(); i != adj[v].end(); ++i)
if (!visited[*i])
DFSUtil(*i, visited);
}

// DFS traversal of the vertices reachable from v.
// It uses recursive DFSUtil()
void Graph::DFS(int v)
{
// Mark all the vertices as not visited
bool *visited = new bool[V];
for (int i = 0; i < V; i++)
visited[i] = false;

// Call the recursive helper function
// to print DFS traversal
DFSUtil(v, visited);
}

// Driver code
int main()
{
// Create a graph given in the above diagram
Graph g(4);
g.addEdge(0, 1);
g.addEdge(0, 2);
g.addEdge(1, 2);
g.addEdge(2, 0);
g.addEdge(2, 3);
g.addEdge(3, 3);

cout << "Following is Depth First Traversal"
" (starting from vertex 2) \n";
g.DFS(2);

return 0;
}
5 changes: 5 additions & 0 deletions Beginner/EvEn_OdD.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
num = int(input("Enter a number: "))
if (num % 2) == 0:
print("{0} is Even".format(num))
else:
print("{0} is Odd".format(num))
14 changes: 14 additions & 0 deletions Beginner/FiB_SeR13.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
def recur_fibo(n):
if n <= 1:
return n
else:
return(recur_fibo(n-1) + recur_fibo(n-2))
# take input from the user
nterms = int(input("How many terms? "))
# check if the number of terms is valid
if nterms <= 0:
print("Plese enter a positive integer")
else:
print("Fibonacci sequence:")
for i in range(nterms):
print(recur_fibo(i))
27 changes: 27 additions & 0 deletions Intermediate/QuIcK_SoRt13.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
def partition(arr,low,high):
i = ( low-1 ) # index of smaller element
pivot = arr[high] # pivot

for j in range(low , high):

# If current element is smaller than or
# equal to pivot
if arr[j] <= pivot:

# increment index of smaller element
i = i+1
arr[i],arr[j] = arr[j],arr[i]

arr[i+1],arr[high] = arr[high],arr[i+1]
return ( i+1 )
def quickSort(arr,low,high):
if low < high:

# pi is partitioning index, arr[p] is now
# at right place
pi = partition(arr,low,high)

# Separately sort elements before
# partition and after partition
quickSort(arr, low, pi-1)
quickSort(arr, pi+1, high)
12 changes: 12 additions & 0 deletions PaLiN.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@

n=int(input("Enter number:"))
temp=n
rev=0
while(n>0):
dig=n%10
rev=rev*10+dig
n=n//10
if(temp==rev):
print("The number is a palindrome!")
else:
print("The number isn't a palindrome!")