Skip to content

Conversation

@HyukjinKwon
Copy link
Owner

No description provided.

@HyukjinKwon HyukjinKwon closed this Apr 8, 2021
HyukjinKwon pushed a commit that referenced this pull request May 13, 2021
### What changes were proposed in this pull request?

This PR is to add code-gen support for LEFT OUTER / RIGHT OUTER sort merge join. Currently sort merge join only supports inner join type (https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/execution/joins/SortMergeJoinExec.scala#L374 ). There's no fundamental reason why we cannot support code-gen for other join types. Here we add code-gen for LEFT OUTER / RIGHT OUTER join. Will submit followup PRs to add LEFT SEMI, LEFT ANTI and FULL OUTER code-gen separately.

The change is to extend current sort merge join logic to work with LEFT OUTER and RIGHT OUTER (should work with LEFT SEMI/ANTI as well, but FULL OUTER join needs some other more code change). Replace left/right with streamed/buffered to make code extendable to other join types besides inner join.

Example query:

```
val df1 = spark.range(10).select($"id".as("k1"), $"id".as("k3"))
val df2 = spark.range(4).select($"id".as("k2"), $"id".as("k4"))
df1.join(df2.hint("SHUFFLE_MERGE"), $"k1" === $"k2" && $"k3" + 1 < $"k4", "left_outer").explain("codegen")
```

Example generated code:

```
== Subtree 5 / 5 (maxMethodCodeSize:396; maxConstantPoolSize:159(0.24% used); numInnerClasses:0) ==
*(5) SortMergeJoin [k1#2L], [k2#8L], LeftOuter, ((k3#3L + 1) < k4#9L)
:- *(2) Sort [k1#2L ASC NULLS FIRST], false, 0
:  +- Exchange hashpartitioning(k1#2L, 5), ENSURE_REQUIREMENTS, [id=#26]
:     +- *(1) Project [id#0L AS k1#2L, id#0L AS k3#3L]
:        +- *(1) Range (0, 10, step=1, splits=2)
+- *(4) Sort [k2#8L ASC NULLS FIRST], false, 0
   +- Exchange hashpartitioning(k2#8L, 5), ENSURE_REQUIREMENTS, [id=#32]
      +- *(3) Project [id#6L AS k2#8L, id#6L AS k4#9L]
         +- *(3) Range (0, 4, step=1, splits=2)

Generated code:
/* 001 */ public Object generate(Object[] references) {
/* 002 */   return new GeneratedIteratorForCodegenStage5(references);
/* 003 */ }
/* 004 */
/* 005 */ // codegenStageId=5
/* 006 */ final class GeneratedIteratorForCodegenStage5 extends org.apache.spark.sql.execution.BufferedRowIterator {
/* 007 */   private Object[] references;
/* 008 */   private scala.collection.Iterator[] inputs;
/* 009 */   private scala.collection.Iterator smj_streamedInput_0;
/* 010 */   private scala.collection.Iterator smj_bufferedInput_0;
/* 011 */   private InternalRow smj_streamedRow_0;
/* 012 */   private InternalRow smj_bufferedRow_0;
/* 013 */   private long smj_value_2;
/* 014 */   private org.apache.spark.sql.execution.ExternalAppendOnlyUnsafeRowArray smj_matches_0;
/* 015 */   private long smj_value_3;
/* 016 */   private org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter[] smj_mutableStateArray_0 = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter[1];
/* 017 */
/* 018 */   public GeneratedIteratorForCodegenStage5(Object[] references) {
/* 019 */     this.references = references;
/* 020 */   }
/* 021 */
/* 022 */   public void init(int index, scala.collection.Iterator[] inputs) {
/* 023 */     partitionIndex = index;
/* 024 */     this.inputs = inputs;
/* 025 */     smj_streamedInput_0 = inputs[0];
/* 026 */     smj_bufferedInput_0 = inputs[1];
/* 027 */
/* 028 */     smj_matches_0 = new org.apache.spark.sql.execution.ExternalAppendOnlyUnsafeRowArray(2147483632, 2147483647);
/* 029 */     smj_mutableStateArray_0[0] = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(4, 0);
/* 030 */
/* 031 */   }
/* 032 */
/* 033 */   private boolean findNextJoinRows(
/* 034 */     scala.collection.Iterator streamedIter,
/* 035 */     scala.collection.Iterator bufferedIter) {
/* 036 */     smj_streamedRow_0 = null;
/* 037 */     int comp = 0;
/* 038 */     while (smj_streamedRow_0 == null) {
/* 039 */       if (!streamedIter.hasNext()) return false;
/* 040 */       smj_streamedRow_0 = (InternalRow) streamedIter.next();
/* 041 */       long smj_value_0 = smj_streamedRow_0.getLong(0);
/* 042 */       if (false) {
/* 043 */         if (!smj_matches_0.isEmpty()) {
/* 044 */           smj_matches_0.clear();
/* 045 */         }
/* 046 */         return false;
/* 047 */
/* 048 */       }
/* 049 */       if (!smj_matches_0.isEmpty()) {
/* 050 */         comp = 0;
/* 051 */         if (comp == 0) {
/* 052 */           comp = (smj_value_0 > smj_value_3 ? 1 : smj_value_0 < smj_value_3 ? -1 : 0);
/* 053 */         }
/* 054 */
/* 055 */         if (comp == 0) {
/* 056 */           return true;
/* 057 */         }
/* 058 */         smj_matches_0.clear();
/* 059 */       }
/* 060 */
/* 061 */       do {
/* 062 */         if (smj_bufferedRow_0 == null) {
/* 063 */           if (!bufferedIter.hasNext()) {
/* 064 */             smj_value_3 = smj_value_0;
/* 065 */             return !smj_matches_0.isEmpty();
/* 066 */           }
/* 067 */           smj_bufferedRow_0 = (InternalRow) bufferedIter.next();
/* 068 */           long smj_value_1 = smj_bufferedRow_0.getLong(0);
/* 069 */           if (false) {
/* 070 */             smj_bufferedRow_0 = null;
/* 071 */             continue;
/* 072 */           }
/* 073 */           smj_value_2 = smj_value_1;
/* 074 */         }
/* 075 */
/* 076 */         comp = 0;
/* 077 */         if (comp == 0) {
/* 078 */           comp = (smj_value_0 > smj_value_2 ? 1 : smj_value_0 < smj_value_2 ? -1 : 0);
/* 079 */         }
/* 080 */
/* 081 */         if (comp > 0) {
/* 082 */           smj_bufferedRow_0 = null;
/* 083 */         } else if (comp < 0) {
/* 084 */           if (!smj_matches_0.isEmpty()) {
/* 085 */             smj_value_3 = smj_value_0;
/* 086 */             return true;
/* 087 */           } else {
/* 088 */             return false;
/* 089 */           }
/* 090 */         } else {
/* 091 */           smj_matches_0.add((UnsafeRow) smj_bufferedRow_0);
/* 092 */           smj_bufferedRow_0 = null;
/* 093 */         }
/* 094 */       } while (smj_streamedRow_0 != null);
/* 095 */     }
/* 096 */     return false; // unreachable
/* 097 */   }
/* 098 */
/* 099 */   protected void processNext() throws java.io.IOException {
/* 100 */     while (smj_streamedInput_0.hasNext()) {
/* 101 */       findNextJoinRows(smj_streamedInput_0, smj_bufferedInput_0);
/* 102 */       long smj_value_4 = -1L;
/* 103 */       long smj_value_5 = -1L;
/* 104 */       boolean smj_loaded_0 = false;
/* 105 */       smj_value_5 = smj_streamedRow_0.getLong(1);
/* 106 */       scala.collection.Iterator<UnsafeRow> smj_iterator_0 = smj_matches_0.generateIterator();
/* 107 */       boolean smj_foundMatch_0 = false;
/* 108 */
/* 109 */       // the last iteration of this loop is to emit an empty row if there is no matched rows.
/* 110 */       while (smj_iterator_0.hasNext() || !smj_foundMatch_0) {
/* 111 */         InternalRow smj_bufferedRow_1 = smj_iterator_0.hasNext() ?
/* 112 */         (InternalRow) smj_iterator_0.next() : null;
/* 113 */         boolean smj_isNull_5 = true;
/* 114 */         long smj_value_9 = -1L;
/* 115 */         if (smj_bufferedRow_1 != null) {
/* 116 */           long smj_value_8 = smj_bufferedRow_1.getLong(1);
/* 117 */           smj_isNull_5 = false;
/* 118 */           smj_value_9 = smj_value_8;
/* 119 */         }
/* 120 */         if (smj_bufferedRow_1 != null) {
/* 121 */           boolean smj_isNull_6 = true;
/* 122 */           boolean smj_value_10 = false;
/* 123 */           long smj_value_11 = -1L;
/* 124 */
/* 125 */           smj_value_11 = smj_value_5 + 1L;
/* 126 */
/* 127 */           if (!smj_isNull_5) {
/* 128 */             smj_isNull_6 = false; // resultCode could change nullability.
/* 129 */             smj_value_10 = smj_value_11 < smj_value_9;
/* 130 */
/* 131 */           }
/* 132 */           if (smj_isNull_6 || !smj_value_10) {
/* 133 */             continue;
/* 134 */           }
/* 135 */         }
/* 136 */         if (!smj_loaded_0) {
/* 137 */           smj_loaded_0 = true;
/* 138 */           smj_value_4 = smj_streamedRow_0.getLong(0);
/* 139 */         }
/* 140 */         boolean smj_isNull_3 = true;
/* 141 */         long smj_value_7 = -1L;
/* 142 */         if (smj_bufferedRow_1 != null) {
/* 143 */           long smj_value_6 = smj_bufferedRow_1.getLong(0);
/* 144 */           smj_isNull_3 = false;
/* 145 */           smj_value_7 = smj_value_6;
/* 146 */         }
/* 147 */         smj_foundMatch_0 = true;
/* 148 */         ((org.apache.spark.sql.execution.metric.SQLMetric) references[0] /* numOutputRows */).add(1);
/* 149 */
/* 150 */         smj_mutableStateArray_0[0].reset();
/* 151 */
/* 152 */         smj_mutableStateArray_0[0].zeroOutNullBytes();
/* 153 */
/* 154 */         smj_mutableStateArray_0[0].write(0, smj_value_4);
/* 155 */
/* 156 */         smj_mutableStateArray_0[0].write(1, smj_value_5);
/* 157 */
/* 158 */         if (smj_isNull_3) {
/* 159 */           smj_mutableStateArray_0[0].setNullAt(2);
/* 160 */         } else {
/* 161 */           smj_mutableStateArray_0[0].write(2, smj_value_7);
/* 162 */         }
/* 163 */
/* 164 */         if (smj_isNull_5) {
/* 165 */           smj_mutableStateArray_0[0].setNullAt(3);
/* 166 */         } else {
/* 167 */           smj_mutableStateArray_0[0].write(3, smj_value_9);
/* 168 */         }
/* 169 */         append((smj_mutableStateArray_0[0].getRow()).copy());
/* 170 */
/* 171 */       }
/* 172 */       if (shouldStop()) return;
/* 173 */     }
/* 174 */     ((org.apache.spark.sql.execution.joins.SortMergeJoinExec) references[1] /* plan */).cleanupResources();
/* 175 */   }
/* 176 */
/* 177 */ }
```

### Why are the changes needed?

Improve query CPU performance. Example micro benchmark below showed 10% run-time improvement.

```
def sortMergeJoinWithDuplicates(): Unit = {
    val N = 2 << 20
    codegenBenchmark("sort merge join with duplicates", N) {
      val df1 = spark.range(N)
        .selectExpr(s"(id * 15485863) % ${N*10} as k1", "id as k3")
      val df2 = spark.range(N)
        .selectExpr(s"(id * 15485867) % ${N*10} as k2", "id as k4")
      val df = df1.join(df2, col("k1") === col("k2") && col("k3") * 3 < col("k4"), "left_outer")
      assert(df.queryExecution.sparkPlan.find(_.isInstanceOf[SortMergeJoinExec]).isDefined)
      df.noop()
    }
 }
```

```
Running benchmark: sort merge join with duplicates
  Running case: sort merge join with duplicates outer-smj-codegen off
  Stopped after 2 iterations, 2696 ms
  Running case: sort merge join with duplicates outer-smj-codegen on
  Stopped after 5 iterations, 6058 ms

Java HotSpot(TM) 64-Bit Server VM 1.8.0_181-b13 on Mac OS X 10.16
Intel(R) Core(TM) i9-9980HK CPU  2.40GHz
sort merge join with duplicates:                       Best Time(ms)   Avg Time(ms)   Stdev(ms)    Rate(M/s)   Per Row(ns)   Relative
-------------------------------------------------------------------------------------------------------------------------------------
sort merge join with duplicates outer-smj-codegen off           1333           1348          21          1.6         635.7       1.0X
sort merge join with duplicates outer-smj-codegen on            1169           1212          47          1.8         557.4       1.1X
```

### Does this PR introduce _any_ user-facing change?

No.

### How was this patch tested?

Added unit test in `WholeStageCodegenSuite.scala` and `WholeStageCodegenSuite.scala`.

Closes apache#32476 from c21/smj-outer-codegen.

Authored-by: Cheng Su <[email protected]>
Signed-off-by: Wenchen Fan <[email protected]>
HyukjinKwon pushed a commit that referenced this pull request Nov 2, 2025
### What changes were proposed in this pull request?

This PR proposes to add `doCanonicalize` function for DataSourceV2ScanRelation. The implementation is similar to [the one in BatchScanExec](https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/v2/BatchScanExec.scala#L150), as well as the [the one in LogicalRelation](https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/LogicalRelation.scala#L52).

### Why are the changes needed?

Query optimization rules such as MergeScalarSubqueries check if two plans are identical by [comparing their canonicalized form](https://github.com/apache/spark/blob/master/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/optimizer/MergeScalarSubqueries.scala#L219). For DSv2, for physical plan, the canonicalization goes down in the child hierarchy to the BatchScanExec, which [has a doCanonicalize function](https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/v2/BatchScanExec.scala#L150); for logical plan, the canonicalization goes down to the DataSourceV2ScanRelation, which, however, does not have a doCanonicalize function. As a result, two logical plans who are semantically identical are not identified.

Moreover, for reference, [DSv1 LogicalRelation](https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/LogicalRelation.scala#L52) also has `doCanonicalize()`.

### Does this PR introduce _any_ user-facing change?

No

### How was this patch tested?

A new unit test is added to show that `MergeScalarSubqueries` is working for DataSourceV2ScanRelation.

For a query
```sql
select (select max(i) from df) as max_i, (select min(i) from df) as min_i
```

Before introducing the canonicalization, the plan is
```
== Parsed Logical Plan ==
'Project [scalar-subquery#2 [] AS max_i#3, scalar-subquery#4 [] AS min_i#5]
:  :- 'Project [unresolvedalias('max('i))]
:  :  +- 'UnresolvedRelation [df], [], false
:  +- 'Project [unresolvedalias('min('i))]
:     +- 'UnresolvedRelation [df], [], false
+- OneRowRelation

== Analyzed Logical Plan ==
max_i: int, min_i: int
Project [scalar-subquery#2 [] AS max_i#3, scalar-subquery#4 [] AS min_i#5]
:  :- Aggregate [max(i#0) AS max(i)#7]
:  :  +- SubqueryAlias df
:  :     +- View (`df`, [i#0, j#1])
:  :        +- RelationV2[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5
:  +- Aggregate [min(i#10) AS min(i)#9]
:     +- SubqueryAlias df
:        +- View (`df`, [i#10, j#11])
:           +- RelationV2[i#10, j#11] class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5
+- OneRowRelation

== Optimized Logical Plan ==
Project [scalar-subquery#2 [] AS max_i#3, scalar-subquery#4 [] AS min_i#5]
:  :- Aggregate [max(i#0) AS max(i)#7]
:  :  +- Project [i#0]
:  :     +- RelationV2[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5
:  +- Aggregate [min(i#10) AS min(i)#9]
:     +- Project [i#10]
:        +- RelationV2[i#10, j#11] class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5
+- OneRowRelation

== Physical Plan ==
AdaptiveSparkPlan isFinalPlan=true
+- == Final Plan ==
   ResultQueryStage 0
   +- *(1) Project [Subquery subquery#2, [id=#32] AS max_i#3, Subquery subquery#4, [id=#33] AS min_i#5]
      :  :- Subquery subquery#2, [id=#32]
      :  :  +- AdaptiveSparkPlan isFinalPlan=true
            +- == Final Plan ==
               ResultQueryStage 1
               +- *(2) HashAggregate(keys=[], functions=[max(i#0)], output=[max(i)#7])
                  +- ShuffleQueryStage 0
                     +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=58]
                        +- *(1) HashAggregate(keys=[], functions=[partial_max(i#0)], output=[max#14])
                           +- *(1) Project [i#0]
                              +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: []
            +- == Initial Plan ==
               HashAggregate(keys=[], functions=[max(i#0)], output=[max(i)#7])
               +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=19]
                  +- HashAggregate(keys=[], functions=[partial_max(i#0)], output=[max#14])
                     +- Project [i#0]
                        +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: []
      :  +- Subquery subquery#4, [id=#33]
      :     +- AdaptiveSparkPlan isFinalPlan=true
            +- == Final Plan ==
               ResultQueryStage 1
               +- *(2) HashAggregate(keys=[], functions=[min(i#10)], output=[min(i)#9])
                  +- ShuffleQueryStage 0
                     +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=63]
                        +- *(1) HashAggregate(keys=[], functions=[partial_min(i#10)], output=[min#15])
                           +- *(1) Project [i#10]
                              +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#10, j#11] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: []
            +- == Initial Plan ==
               HashAggregate(keys=[], functions=[min(i#10)], output=[min(i)#9])
               +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=30]
                  +- HashAggregate(keys=[], functions=[partial_min(i#10)], output=[min#15])
                     +- Project [i#10]
                        +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#10, j#11] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: []
      +- *(1) Scan OneRowRelation[]
+- == Initial Plan ==
   Project [Subquery subquery#2, [id=#32] AS max_i#3, Subquery subquery#4, [id=#33] AS min_i#5]
   :  :- Subquery subquery#2, [id=#32]
   :  :  +- AdaptiveSparkPlan isFinalPlan=true
         +- == Final Plan ==
            ResultQueryStage 1
            +- *(2) HashAggregate(keys=[], functions=[max(i#0)], output=[max(i)#7])
               +- ShuffleQueryStage 0
                  +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=58]
                     +- *(1) HashAggregate(keys=[], functions=[partial_max(i#0)], output=[max#14])
                        +- *(1) Project [i#0]
                           +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: []
         +- == Initial Plan ==
            HashAggregate(keys=[], functions=[max(i#0)], output=[max(i)#7])
            +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=19]
               +- HashAggregate(keys=[], functions=[partial_max(i#0)], output=[max#14])
                  +- Project [i#0]
                     +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: []
   :  +- Subquery subquery#4, [id=#33]
   :     +- AdaptiveSparkPlan isFinalPlan=true
         +- == Final Plan ==
            ResultQueryStage 1
            +- *(2) HashAggregate(keys=[], functions=[min(i#10)], output=[min(i)#9])
               +- ShuffleQueryStage 0
                  +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=63]
                     +- *(1) HashAggregate(keys=[], functions=[partial_min(i#10)], output=[min#15])
                        +- *(1) Project [i#10]
                           +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#10, j#11] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: []
         +- == Initial Plan ==
            HashAggregate(keys=[], functions=[min(i#10)], output=[min(i)#9])
            +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=30]
               +- HashAggregate(keys=[], functions=[partial_min(i#10)], output=[min#15])
                  +- Project [i#10]
                     +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#10, j#11] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: []
   +- Scan OneRowRelation[]
```

After introducing the canonicalization, the plan is as following, where you can see **ReusedSubquery**
```
== Parsed Logical Plan ==
'Project [scalar-subquery#2 [] AS max_i#3, scalar-subquery#4 [] AS min_i#5]
:  :- 'Project [unresolvedalias('max('i))]
:  :  +- 'UnresolvedRelation [df], [], false
:  +- 'Project [unresolvedalias('min('i))]
:     +- 'UnresolvedRelation [df], [], false
+- OneRowRelation

== Analyzed Logical Plan ==
max_i: int, min_i: int
Project [scalar-subquery#2 [] AS max_i#3, scalar-subquery#4 [] AS min_i#5]
:  :- Aggregate [max(i#0) AS max(i)#7]
:  :  +- SubqueryAlias df
:  :     +- View (`df`, [i#0, j#1])
:  :        +- RelationV2[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5
:  +- Aggregate [min(i#10) AS min(i)#9]
:     +- SubqueryAlias df
:        +- View (`df`, [i#10, j#11])
:           +- RelationV2[i#10, j#11] class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5
+- OneRowRelation

== Optimized Logical Plan ==
Project [scalar-subquery#2 [].max(i) AS max_i#3, scalar-subquery#4 [].min(i) AS min_i#5]
:  :- Project [named_struct(max(i), max(i)#7, min(i), min(i)#9) AS mergedValue#14]
:  :  +- Aggregate [max(i#0) AS max(i)#7, min(i#0) AS min(i)#9]
:  :     +- Project [i#0]
:  :        +- RelationV2[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5
:  +- Project [named_struct(max(i), max(i)#7, min(i), min(i)#9) AS mergedValue#14]
:     +- Aggregate [max(i#0) AS max(i)#7, min(i#0) AS min(i)#9]
:        +- Project [i#0]
:           +- RelationV2[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5
+- OneRowRelation

== Physical Plan ==
AdaptiveSparkPlan isFinalPlan=true
+- == Final Plan ==
   ResultQueryStage 0
   +- *(1) Project [Subquery subquery#2, [id=#40].max(i) AS max_i#3, ReusedSubquery Subquery subquery#2, [id=#40].min(i) AS min_i#5]
      :  :- Subquery subquery#2, [id=#40]
      :  :  +- AdaptiveSparkPlan isFinalPlan=true
            +- == Final Plan ==
               ResultQueryStage 1
               +- *(2) Project [named_struct(max(i), max(i)#7, min(i), min(i)#9) AS mergedValue#14]
                  +- *(2) HashAggregate(keys=[], functions=[max(i#0), min(i#0)], output=[max(i)#7, min(i)#9])
                     +- ShuffleQueryStage 0
                        +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=71]
                           +- *(1) HashAggregate(keys=[], functions=[partial_max(i#0), partial_min(i#0)], output=[max#16, min#17])
                              +- *(1) Project [i#0]
                                 +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: []
            +- == Initial Plan ==
               Project [named_struct(max(i), max(i)#7, min(i), min(i)#9) AS mergedValue#14]
               +- HashAggregate(keys=[], functions=[max(i#0), min(i#0)], output=[max(i)#7, min(i)#9])
                  +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=22]
                     +- HashAggregate(keys=[], functions=[partial_max(i#0), partial_min(i#0)], output=[max#16, min#17])
                        +- Project [i#0]
                           +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: []
      :  +- ReusedSubquery Subquery subquery#2, [id=#40]
      +- *(1) Scan OneRowRelation[]
+- == Initial Plan ==
   Project [Subquery subquery#2, [id=#40].max(i) AS max_i#3, Subquery subquery#4, [id=#41].min(i) AS min_i#5]
   :  :- Subquery subquery#2, [id=#40]
   :  :  +- AdaptiveSparkPlan isFinalPlan=true
         +- == Final Plan ==
            ResultQueryStage 1
            +- *(2) Project [named_struct(max(i), max(i)#7, min(i), min(i)#9) AS mergedValue#14]
               +- *(2) HashAggregate(keys=[], functions=[max(i#0), min(i#0)], output=[max(i)#7, min(i)#9])
                  +- ShuffleQueryStage 0
                     +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=71]
                        +- *(1) HashAggregate(keys=[], functions=[partial_max(i#0), partial_min(i#0)], output=[max#16, min#17])
                           +- *(1) Project [i#0]
                              +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: []
         +- == Initial Plan ==
            Project [named_struct(max(i), max(i)#7, min(i), min(i)#9) AS mergedValue#14]
            +- HashAggregate(keys=[], functions=[max(i#0), min(i#0)], output=[max(i)#7, min(i)#9])
               +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=22]
                  +- HashAggregate(keys=[], functions=[partial_max(i#0), partial_min(i#0)], output=[max#16, min#17])
                     +- Project [i#0]
                        +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: []
   :  +- Subquery subquery#4, [id=#41]
   :     +- AdaptiveSparkPlan isFinalPlan=false
   :        +- Project [named_struct(max(i), max(i)#7, min(i), min(i)#9) AS mergedValue#14]
   :           +- HashAggregate(keys=[], functions=[max(i#0), min(i#0)], output=[max(i)#7, min(i)#9])
   :              +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=37]
   :                 +- HashAggregate(keys=[], functions=[partial_max(i#0), partial_min(i#0)], output=[max#16, min#17])
   :                    +- Project [i#0]
   :                       +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: []
   +- Scan OneRowRelation[]
```

### Was this patch authored or co-authored using generative AI tooling?

No

Closes apache#52529 from yhuang-db/scan-canonicalization.

Authored-by: yhuang-db <[email protected]>
Signed-off-by: Peter Toth <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants