Skip to content

Conversation

@wenbinc-Bin
Copy link

@wenbinc-Bin wenbinc-Bin commented May 19, 2025

1.Add Qwen2.5-Omni thinker: Adapted from vllm-project#15130
2.Optimize Qwen multi-modal processing: Adapted from #1109
3.Porting optimization to Omni
4.optimize W and H restriction.

example:

# Process audio inputs
python examples/offline_inference/audio_language.py --model-type qwen2_5_omni

# Process image inputs
python examples/offline_inference/vision_language.py --modality image --model-type qwen2_5_omni

# Process video inputs (WIP)
python examples/offline_inference/vision_language.py --modality video --model-type qwen2_5_omni

bmyrcha and others added 30 commits April 8, 2025 09:51
Switched execution of versioned branches to _next and added logs
redirection to file.
Adjusted method of extracting synapse build id for release branches
…naAI#1040)

This PR implements HPU support for pipeline parallelism. Tested accuracy
and it's the same as TP accuracy on:
- Llama3.1-70b-Instruct
- Llama3.2-3b-Instruct
- Mixtral-8x7b

To serve with PP:
`VLLM_DECODE_BS_BUCKET_MIN=384 VLLM_DECODE_BLOCK_BUCKET_MAX=896 vllm
serve /mnt/weka/data/pytorch/llama3.1/Meta-Llama-3.1-70B-Instruct/
--tensor-parallel-size 1 --pipeline-parallel-size 4 --max-num-seqs 384
--disable-log-requests --dtype bfloat16 --gpu-memory-util 0.9
--disable-log-stats --num_scheduler_steps 1 --max-num-batched-tokens
2048 --max-model-len 256 --block-size 128`

Known issues:
* since for Pipeline Parallelism max_num_seqs acts as a microbatch for a
single virtual_engine - for bigger batch_size we fall into a very
specific corner case and get flat_pa error -> set batch_size to
approximately batch size that you would use in TP but divided by pp_size
* delayed sampling is not yet compatible with pipeline parallelism
* virtaul_engine ID is passed to HPUGraph which results in pp_size *
amount of graphs

Signed-off-by: jmaksymczuk <[email protected]>
Co-authored-by: Rafal Litka <[email protected]>
Co-authored-by: Michał Kuligowski <[email protected]>
…#1038)

Cherry-pick of HabanaAI#921

Co-authored-by: Konrad Zawora <[email protected]>
Co-authored-by: Michał Kuligowski <[email protected]>
migrated from a PR to habana_main:
HabanaAI#1014

For Best performance, this PR is recommended to run with INC:
[[SW-223553] [VLLM] Merge deepseek changes into habana_main - Habana
Labs](https://jira.habana-labs.com/browse/SW-223553)

**test acc of G3**:
```bash
huggingface-cli download Yi30/inc-woq-default-pile-one-cache-408  --local-dir ./scripts/nc_workspace_measure_kvache

cat inc_quant_with_fp8kv_config.json
{
    "mode": "QUANTIZE",
    "observer": "maxabs",
    "scale_method": "maxabs_hw",
    "scale_format": "const",
    "allowlist": {
        "types": [],
        "names": []
    },
    "blocklist": {
        "types": [],
        "names": [
            "lm_head",
            "mlp\\.gate\\b",
            "block2batch_matmul"
        ]
    },
    "dump_stats_path": "./inc-woq-default-pile-one-cache-408-for-fp8-mla/inc_measure_output"
}


QUANT_CONFIG=inc_quant_with_fp8kv_config.json \
PT_HPU_LAZY_MODE=1 \
VLLM_SKIP_WARMUP=true \
PT_HPU_ENABLE_LAZY_COLLECTIVES=true \
PT_HPU_WEIGHT_SHARING=0 \
VLLM_MLA_DISABLE_REQUANTIZATION=1 \
lm_eval --model vllm \
  --model_args "pretrained=/mnt/weka/data/pytorch/DeepSeek-R1/,tensor_parallel_size=8,distributed_executor_backend=mp,trust_remote_code=true,max_model_len=4096,use_v2_block_manager=True,dtype=bfloat16,kv_cache_dtype=fp8_inc" \
  --tasks gsm8k --num_fewshot "5" --limit "256" \
  --batch_size "8"
```

**test acc of G2**:
**convert original DeepSeek-R1** using
[convert_for_g2.py](https://github.com/yangulei/vllm-fork/blob/deepseek_r1_g2/scripts/convert_for_g2.py)
(this step will be removed as INC updates.)

```bash

huggingface-cli download Yi30/inc-woq-default-pile-one-cache-412-g2  --local-dir ./scripts/nc_workspace_measure_kvache

cat inc_quant_with_fp8kv_config.json
{
    "mode": "QUANTIZE",
    "observer": "maxabs",
    "scale_method": "maxabs_hw",
    "scale_format": "const",
    "allowlist": {
        "types": [],
        "names": []
    },
    "blocklist": {
        "types": [],
        "names": [
            "lm_head",
            "mlp\\.gate\\b",
            "block2batch_matmul"
        ]
    },
    "dump_stats_path": "./nc_workspace_measure_kvache/inc_measure_output"
}
```


vllm
(pretrained=/mnt/weka/data/pytorch/DeepSeek-R1/,tensor_parallel_size=8,distributed_executor_backend=mp,trust_remote_code=true,max_model_len=4096,use_v2_block_manager=True,dtype=bfloat16,kv_cache_dtype=fp8_inc),
gen_kwargs: (None), limit: 256.0, num_fewshot: 5, batch_size: 128
|Tasks|Version| Filter |n-shot| Metric | |Value | |Stderr|

|-----|------:|----------------|-----:|-----------|---|-----:|---|-----:|
|gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.9492|± |0.0137|
| | |strict-match | 5|exact_match|↑ |0.9453|± |0.0142|


----------
Need to use vllm-hpu-extension:
https://github.com/HabanaAI/vllm-hpu-extension/tree/dev/chendi/deepseek_r1

Status:

runnable with Deepseek-R1.
Accuracy check: for block fp8 weight => garbage output
accuracy check for BF16 weight => looks good.

test scripts:
```
from vllm import LLM, SamplingParams
import os

os.environ['VLLM_SKIP_WARMUP'] = 'true'
os.environ['PT_HPU_LAZY_MODE'] = '1'
os.environ['PT_HPU_ENABLE_LAZY_COLLECTIVES']='true'
os.environ['PT_HPU_WEIGHT_SHARING']='0'
#os.environ['HABANA_LOGS']="vllm_inc_debug"
#os.environ["LOG_LEVEL_ALL"]="3"
os.environ['VLLM_MLA_DISABLE_REQUANTIZATION']='1'
#os.environ["QUANT_CONFIG"] = "inc_quant_with_fp8kv_config.json"
#os.environ["LOGLEVEL"] = "DEBUG"

 
prompts = [
    "Hello, my name is",
    "The president of the United States is",
    "The capital of France is",
    "The future of AI is",
]
 
if __name__ == "__main__":
    # Create a sampling params object.
    sampling_params = SamplingParams(temperature=0.0, max_tokens=16, ignore_eos=True)
 
    # Create an LLM.
    model_path = "/data/models/DeepSeek-R1"
 
    llm = LLM(model=model_path,
            trust_remote_code=True,
            enforce_eager=True,
            dtype="bfloat16",
            use_v2_block_manager=True,
            max_model_len=1024,
            max_num_seqs=1,
            tensor_parallel_size=8,
            distributed_executor_backend='mp',
            gpu_memory_utilization=0.8,
            #kv_cache_dtype="fp8_inc",
            seed=2024)
 
    # Generate texts from the prompts. The output is a list of RequestOutput objects
    # that contain the prompt, generated text, and other information.
    outputs = llm.generate(prompts, sampling_params)
    # Print the outputs.
    for output in outputs:
        prompt = output.prompt
        generated_text = output.outputs[0].text
        print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
    if os.environ.get("QUANT_CONFIG", None) is not None:
        llm.llm_engine.model_executor.shutdown()
```

---------

Signed-off-by: Chendi.Xue <[email protected]>
Signed-off-by: kwisniewski98 <[email protected]>
Signed-off-by: Chendi Xue <[email protected]>
Co-authored-by: kwisniewski98 <[email protected]>
…banaAI#1048)

The make_attn_bias in hpu_model_runner doesn't cover the non-causal
embedding model mask set and also vertical mask off is not set when
merged prefill is enabled.
… multiple cards (HabanaAI#1100)

- Add `VLLM_DISABLE_MARK_SCALES_AS_CONST=true` for speed up the warmup
stage.
- Fix the `dist.barrier` issue for single card

cc @xuechendi @thuang6

---------

Signed-off-by: Yi Liu <[email protected]>
Co-authored-by: Yi Liu <[email protected]>
…erence (HabanaAI#1103)

Original PR HabanaAI#897

Co-authored-by: Jiafan Wang <[email protected]>
Co-authored-by: Michał Kuligowski <[email protected]>
…AI#1093)

Added workflow that allows codeowners and testowners to skip "Summarize
Test Results" check in PRs

Cherry-pick of 3483068b69fea1070995ffc14f6a3fbd5721f4f2
Previously it was only checking if it is using quant_config and choosing
VllmMixtureOfExpertsOpFP8 as OP, which only difference is that when
measuring scales it is assuming block quant. This will only happen when
we are using Fp8MoEMethod as quant_method.
Kwargs in moe_op call had to be disabled, beacuse of different apis of
FP8 and unquantized

---------

Signed-off-by: kwisniewski98 <[email protected]>
It's the full list of changes in documentation prepared for the vLLM
1.21 release.

---------

Signed-off-by: Artur Fierka <[email protected]>
Co-authored-by: Bartosz Kuncer <[email protected]>
Co-authored-by: Bartosz Kuncer <[email protected]>
Co-authored-by: Mohit Deopujari <[email protected]>
Co-authored-by: Artur Fierka <[email protected]>
Co-authored-by: AnetaKaczynska <[email protected]>
Fix logging in multidevice scenario (currently all workers log into dir
'0', with this change each worker logs to '{n}' directory)
Bump vllm-hpu-extension hash
Cherry-pick of HabanaAI#1086

Signed-off-by: Michal Adamczyk <[email protected]>
Co-authored-by: Michał Kuligowski <[email protected]>
Creates the 1.21.0 version of the UBI Dockerfile for use with Red Hat
OpenShift AI.
Fix the llama 3.2 11b/90b accuracy issue that caused by is_causal
setting to False.
Reviewed Gaudi README.

---------

Co-authored-by: PatrykWo <[email protected]>
Co-authored-by: PatW <[email protected]>
<!--- pyml disable-next-line no-emphasis-as-heading -->

Co-authored-by: Bartosz Kuncer <[email protected]>
It's the last change to readme before 1.21 release.
Final touch in the table of supported models.
@czhu15
Copy link

czhu15 commented May 19, 2025

Can you provide an example code on how to run omni model? either on the commit message for one standalone script file under examples folder.

wenbinc-Bin and others added 4 commits May 19, 2025 06:47
Official PR: vllm-project#15130

example:
python examples/offline_inference/audio_language.py --model-type qwen2_5_omni

python examples/offline_inference/vision_language.py --modality image --model-type qwen2_5_omni

python examples/offline_inference/vision_language.py --modality video --model-type qwen2_5_omni

Signed-off-by: Chen, Wenbin <[email protected]>
Pad W and H so that W/H don't need to be aligned to 112

Signed-off-by: Chen, Wenbin <[email protected]>
@wenbinc-Bin
Copy link
Author

Can you provide an example code on how to run omni model? either on the commit message for one standalone script file under examples folder.

I updated the PR comment and commit message.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.