Skip to content

HIT-HPC-Group/GreenDLS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GREENDLS

./data holds the inference data needed for deep learning applications

./llm is the source code of our work in Qwen

./src is the source code of our work.

./PerformanceMeasurement is our tool to measure GPU power, GPU energy, GPU SM frequency, GPU memory frequency, execution time, CPU power, CPU energy, etc.

./profile is used to collect data and build predictive models

Installation and Deployment Process

  1. Installation of Libraries and Software:

    • Install docker.
    apt install docker.io
    
    • Install NVIDIA Container Toolkit.
    distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \
       && curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add - \
       && curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
    curl -s -L https://nvidia.github.io/nvidia-container-runtime/experimental/$distribution/nvidia-container-runtime.list | sudo tee /etc/apt/sources.list.d/nvidia-container-runtime.list
    sudo apt-get update
    sudo apt-get install -y nvidia-docker2
    sudo systemctl restart docker
    sudo docker run --rm --gpus all nvidia/cuda:11.0.3-base-ubuntu20.04 nvidia-smi
    
    • Pull docker images.
    docker pull txylabs/qwen
    docker pull txylabs/tensorrt
    
  2. Deployment of Code:

    • Pull GREENDLS code.
    git clone https://github.com/HIT-HPC-Group/GreenDLS.
    

    3.Getting Started:

    • Start Docker

      • If you are deploying a normal DNN model, such as resnet50,vgg19,densenet201

        sudo docker run -it --privileged=true --shm-size="32g"  -v /yoursource:/home --gpus all txylabs/tensorrt
        
      • If you want to deploy Qwen language model

        sudo docker run -it --privileged=true --shm-size="32g"  -v /yoursource:/home --gpus all txylabs/qwen
        
    • Measure

      Use the ./profile/trtInference.py file to collect the running status of DNN on the GPU.

    • Profiler

      Use the ./profile/predictModel.ipynb file to build a prediction model

    • train && test

      Run ./src/main.sh for DNN model and ./llm/src/main.sh for Qwen.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published