Reinforcement Learning-based Self-adaptive Differential Evolution through Automated Landscape Feature Learning
Here we provide sourcecodes of RLDE-AFL, which has been recently accpeted by GECCO 2025.
The PDF version of the paper is available here. If you find our RLDE-AFL useful, please cite it in your publications or projects.
@inproceedings{guo2025rldeafl,
title={Reinforcement Learning-based Self-adaptive Differential Evolution through Automated Landscape Feature Learning},
author={Guo, Hongshu and Ma, Sijie and Huang, Zechuan and Hu, Yuzhi and Ma, Zeyuan and Zhang, Xinglin and Gong, Yue-Jiao},
booktitle={},
year={2025}
}
You can install all of dependencies of RLDE-AFL via the command below.
pip install -r requirements.txt
The training process can be activated via the command below, which is just an example.
python main.py --run_experiments --problem bbob --difficulty difficult --device cuda --max_epoch 24 --pop_size 100 --max_fes 20000 --crossover_op binomial exponential MDE_pBX --reward_ratio 1 --seed 7 --trainset_seed 13 --testset_seed 1024 --rollout_interval 10 --fe_train --run_name test_run
For more adjustable settings, please refer to main.py
and config.py
for details.
Recording results: Log files will be saved to ./outputs/logs/train/
. The saved checkpoints will be saved to ./outputs/model/train/
. TensorBoard files will be located in ./tensorboard/
. The file structure is as follow:
outputs
|--logs
|--train
|--run_name
|--...
|--models
|--train
|--run_name
|--Epoch
|--epoch1.pkl
|--epoch2.pkl
|--...
The rollout process can be easily activated via the command below.
python main.py --test --problem bbob --difficulty difficult --device cuda --max_epoch 100 --pop_size 100 --max_fes 2000 --crossover_op binomial exponential MDE_pBX --reward_ratio 1 --seed 7 --trainset_seed 13 --testset_seed 1024 --rollout_interval 10 --fe_train --run_name test_run --agent_load_dir [The checkpoint saving directory] --agent_model [The purpose model name]
To use the test_model.pkl file located in the home directory as the target model, you can modify the command as follows:
python main.py --test --problem bbob --difficulty difficult --device cuda --max_epoch 100 --pop_size 100 --max_fes 2000 --crossover_op binomial exponential MDE_pBX --reward_ratio 1 --seed 7 --trainset_seed 13 --testset_seed 1024 --rollout_interval 10 --fe_train --run_name test_run --agent_load_dir ./ --agent_model test_model