Skip to content

Conversation

@EnricoMi
Copy link

@EnricoMi EnricoMi commented Mar 7, 2024

What changes were proposed in this pull request?

Make Kubernetes resource manager support existing config spark.ui.custom.executor.log.url.

Allow for

spark.ui.custom.executor.log.url="https://my.custom.url/logs?app={{APP_ID}}&executor={{EXECUTOR_ID}}"

Supports these variables:

  • APP_ID: The unique application id
  • EXECUTOR_ID: The executor id (a positive integer larger than zero)
  • HOSTNAME: The name of the host where the executor runs
  • KUBERNETES_NAMESPACE: The namespace where the executor pods run
  • KUBERNETES_POD_NAME: The name of the pod that contains the executor
  • FILE_NAME: The name of the log, which is always "log"

Why are the changes needed?

Running Spark on Kubernetes requires persisting the logs elsewhere. Having the Spark UI link to those logs is very useful. This is currently only supported by YARN.

Does this PR introduce any user-facing change?

Spark UI provides links to logs when run on Kubernetes.

How was this patch tested?

Unit test and manually tested on minikube K8S cluster.

Was this patch authored or co-authored using generative AI tooling?

No

@github-actions
Copy link

We're closing this PR because it hasn't been updated in a while. This isn't a judgement on the merit of the PR in any way. It's just a way of keeping the PR queue manageable.
If you'd like to revive this PR, please reopen it and ask a committer to remove the Stale tag!

@github-actions github-actions bot added the Stale label Jul 30, 2024
@EnricoMi EnricoMi force-pushed the k8s-custom-executor-log-url branch from 2f896c8 to 315a0bb Compare July 30, 2024 08:06
@github-actions github-actions bot closed this Jul 31, 2024
EnricoMi pushed a commit that referenced this pull request Sep 2, 2025
…onicalized expressions

### What changes were proposed in this pull request?

Make PullOutNonDeterministic use canonicalized expressions to dedup group and  aggregate expressions. This affects pyspark udfs in particular. Example:

```
from pyspark.sql.functions import col, avg, udf

pythonUDF = udf(lambda x: x).asNondeterministic()

spark.range(10)\
.selectExpr("id", "id % 3 as value")\
.groupBy(pythonUDF(col("value")))\
.agg(avg("id"), pythonUDF(col("value")))\
.explain(extended=True)
```

Currently results in a plan like this:

```
Aggregate [_nondeterministic#15](#15), [_nondeterministic#15 AS dummyNondeterministicUDF(value)#12, avg(id#0L) AS avg(id)#13, dummyNondeterministicUDF(value#6L)#8 AS dummyNondeterministicUDF(value)#14](#15%20AS%20dummyNondeterministicUDF(value)#12,%20avg(id#0L)%20AS%20avg(id)#13,%20dummyNondeterministicUDF(value#6L)#8%20AS%20dummyNondeterministicUDF(value)#14)
+- Project [id#0L, value#6L, dummyNondeterministicUDF(value#6L)#7 AS _nondeterministic#15](#0L,%20value#6L,%20dummyNondeterministicUDF(value#6L)#7%20AS%20_nondeterministic#15)
   +- Project [id#0L, (id#0L % cast(3 as bigint)) AS value#6L](#0L,%20(id#0L%20%%20cast(3%20as%20bigint))%20AS%20value#6L)
      +- Range (0, 10, step=1, splits=Some(2))
```

and then it throws:

```
[[MISSING_AGGREGATION] The non-aggregating expression "value" is based on columns which are not participating in the GROUP BY clause. Add the columns or the expression to the GROUP BY, aggregate the expression, or use "any_value(value)" if you do not care which of the values within a group is returned. SQLSTATE: 42803
```

- how canonicalized fixes this:
  -  nondeterministic PythonUDF expressions always have distinct resultIds per udf
  - The fix is to canonicalize the expressions when matching. Canonicalized means that we're setting the resultIds to -1, allowing us to dedup the PythonUDF expressions.
- for deterministic UDFs, this rule does not apply and "Post Analysis" batch extracts and deduplicates the expressions, as expected

### Why are the changes needed?

- the output of the query with the fix applied still makes sense - the nondeterministic UDF is invoked only once, in the project.

### Does this PR introduce _any_ user-facing change?

Yes, it's additive, it enables queries to run that previously threw errors.

### How was this patch tested?

- added unit test

### Was this patch authored or co-authored using generative AI tooling?

No

Closes apache#52061 from benrobby/adhoc-fix-pull-out-nondeterministic.

Authored-by: Ben Hurdelhey <[email protected]>
Signed-off-by: Wenchen Fan <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants