Skip to content

Commit

Permalink
arm64: Documentation: add list of software workarounds for errata
Browse files Browse the repository at this point in the history
It's not immediately obvious which hardware errata are worked around in
the Linux kernel for an arbitrary kernel tree, so add a file to keep
track of what we're working around.

Acked-by: Catalin Marinas <[email protected]>
Signed-off-by: Will Deacon <[email protected]>
  • Loading branch information
wildea01 committed Dec 11, 2015
1 parent f00083c commit 9cb9c9e
Showing 1 changed file with 58 additions and 0 deletions.
58 changes: 58 additions & 0 deletions Documentation/arm64/silicon-errata.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,58 @@
Silicon Errata and Software Workarounds
=======================================

Author: Will Deacon <[email protected]>
Date : 27 November 2015

It is an unfortunate fact of life that hardware is often produced with
so-called "errata", which can cause it to deviate from the architecture
under specific circumstances. For hardware produced by ARM, these
errata are broadly classified into the following categories:

Category A: A critical error without a viable workaround.
Category B: A significant or critical error with an acceptable
workaround.
Category C: A minor error that is not expected to occur under normal
operation.

For more information, consult one of the "Software Developers Errata
Notice" documents available on infocenter.arm.com (registration
required).

As far as Linux is concerned, Category B errata may require some special
treatment in the operating system. For example, avoiding a particular
sequence of code, or configuring the processor in a particular way. A
less common situation may require similar actions in order to declassify
a Category A erratum into a Category C erratum. These are collectively
known as "software workarounds" and are only required in the minority of
cases (e.g. those cases that both require a non-secure workaround *and*
can be triggered by Linux).

For software workarounds that may adversely impact systems unaffected by
the erratum in question, a Kconfig entry is added under "Kernel
Features" -> "ARM errata workarounds via the alternatives framework".
These are enabled by default and patched in at runtime when an affected
CPU is detected. For less-intrusive workarounds, a Kconfig option is not
available and the code is structured (preferably with a comment) in such
a way that the erratum will not be hit.

This approach can make it slightly onerous to determine exactly which
errata are worked around in an arbitrary kernel source tree, so this
file acts as a registry of software workarounds in the Linux Kernel and
will be updated when new workarounds are committed and backported to
stable kernels.

| Implementor | Component | Erratum ID | Kconfig |
+----------------+-----------------+-----------------+-------------------------+
| ARM | Cortex-A53 | #826319 | ARM64_ERRATUM_826319 |
| ARM | Cortex-A53 | #827319 | ARM64_ERRATUM_827319 |
| ARM | Cortex-A53 | #824069 | ARM64_ERRATUM_824069 |
| ARM | Cortex-A53 | #819472 | ARM64_ERRATUM_819472 |
| ARM | Cortex-A53 | #845719 | ARM64_ERRATUM_845719 |
| ARM | Cortex-A53 | #843419 | ARM64_ERRATUM_843419 |
| ARM | Cortex-A57 | #832075 | ARM64_ERRATUM_832075 |
| ARM | Cortex-A57 | #852523 | N/A |
| ARM | Cortex-A57 | #834220 | ARM64_ERRATUM_834220 |
| | | | |
| Cavium | ThunderX ITS | #22375, #24313 | CAVIUM_ERRATUM_22375 |
| Cavium | ThunderX GICv3 | #23154 | CAVIUM_ERRATUM_23154 |

0 comments on commit 9cb9c9e

Please sign in to comment.