Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

implementation for batch-wise matrix multiplication #100

Merged
merged 9 commits into from
Feb 28, 2020
1 change: 1 addition & 0 deletions src/NNlib.jl
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@ end

include("activation.jl")
include("softmax.jl")
include("batched/batchedmul.jl")
include("gemm.jl")
include("conv.jl")
include("pooling.jl")
Expand Down
67 changes: 67 additions & 0 deletions src/batched/batchedadjtrans.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,67 @@
using LinearAlgebra
import Base: -

"""
BatchedTranspose{T, N, S} <: AbstractBatchedMatrix{T, N}
Batched transpose. Transpose a batch of matrix.
"""
struct BatchedTranspose{T, S} <: AbstractArray{T, 3}
parent::S
BatchedTranspose{T, S}(X::S) where {T, S} = new{T, S}(X)
end

"""
batched_transpose(A)
Lazy batched transpose.
"""
batched_transpose(A::AbstractArray{T}) where T = BatchedTranspose(A)
batched_transpose(A::BatchedTranspose) = A.parent

"""
BatchedAdjoint{T, N, S} <: AbstractBatchedMatrix{T, N}
Batched ajoint. Transpose a batch of matrix.
"""
struct BatchedAdjoint{T, S} <: AbstractArray{T, 3}
parent::S
BatchedAdjoint{T, S}(X::S) where {T, S} = new{T, S}(X)
end

"""
batched_adjoint(A)
Lazy batched adjoint.
"""
batched_adjoint(A::AbstractArray{T, 3}) where T = BatchedAdjoint(A)
batched_adjoint(A::BatchedAdjoint) = A.parent

BatchedAdjoint(A) = BatchedAdjoint{Base.promote_op(adjoint,eltype(A)),typeof(A)}(A)
BatchedTranspose(A) = BatchedTranspose{Base.promote_op(transpose,eltype(A)),typeof(A)}(A)


const BatchedAdjOrTrans{T, S} = Union{BatchedTranspose{T, S}, BatchedAdjoint{T, S}}

LinearAlgebra.wrapperop(A::BatchedAdjoint) = batched_adjoint
LinearAlgebra.wrapperop(B::BatchedTranspose) = batched_transpose

# AbstractArray Interface
Base.length(A::BatchedAdjOrTrans) = length(A.parent)
Base.size(m::BatchedAdjOrTrans) = (size(m.parent, 2), size(m.parent, 1), size(m.parent, 3))
Base.axes(m::BatchedAdjOrTrans) = (axes(m.parent, 2), axes(m.parent, 1), axes(m.parent, 3))

Base.IndexStyle(::Type{<:BatchedAdjOrTrans}) = IndexCartesian()
Base.@propagate_inbounds Base.getindex(m::BatchedTranspose, i::Int, j::Int, k::Int) = getindex(m.parent, j, i, k)
Base.@propagate_inbounds Base.getindex(m::BatchedAdjoint, i::Int, j::Int, k::Int) = adjoint(getindex(m.parent, j, i, k))
Base.@propagate_inbounds Base.setindex!(m::BatchedAdjOrTrans, v, i::Int, j::Int, k::Int) = setindex!(m.parent, v, j, i, k)

Base.similar(A::BatchedAdjOrTrans, T::Type, dims::Dims) = similar(A.parent, T, dims)
Base.similar(A::BatchedAdjOrTrans, dims::Dims) = similar(A.parent, dims)
Base.similar(A::BatchedAdjOrTrans, T::Type) = similar(A.parent, T, size(A))
Base.similar(A::BatchedAdjOrTrans) = similar(A.parent, size(A))

Base.parent(A::BatchedAdjOrTrans) = A.parent

(-)(A::BatchedAdjoint) = BatchedAdjoint( -A.parent)
(-)(A::BatchedTranspose) = BatchedTranspose(-A.parent)

Base.copy(A::BatchedTranspose) = BatchedTranspose(copy(A.parent))
Base.copy(A::BatchedAdjoint) = BatchedAdjoint(copy(A.parent))

38 changes: 38 additions & 0 deletions src/batched/batchedmul.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
# batch-wise matrix multiplication
# wrapper for batched_gemm!
export batched_mul, batched_transpose, batched_adjoint


include("./batchedadjtrans.jl")

function batched_mul(A::AbstractArray{T, 3}, B::AbstractArray{T, 3}) where T
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

a docstring here?

size(A, 3) == size(B, 3) || throw(DimensionMismatch("batch size mismatch"))
batched_mul!(similar(A, (size(A, 1), size(B, 2), size(A, 3))), A, B)
end

"""
batched_mul!(C, A, B) -> C
batched `mul!`.
"""
function batched_mul! end

_unbatch(A) = A
_unbatch(A::BatchedAdjOrTrans) = A.parent

# bmm
const _BATCHED_MATRIX_LIST = [
(:(AbstractArray{T, 3}), 'N'),
(:(BatchedTranspose{T, <:AbstractArray{T, 3}}), 'T'),
(:(BatchedAdjoint{T, <:AbstractArray{T, 3}}), 'C')
]

for (TA, transA) in _BATCHED_MATRIX_LIST, (TB, transB) in _BATCHED_MATRIX_LIST
@eval begin
function batched_mul!(C::AbstractArray{T, 3}, A::$TA, B::$TB) where T
batched_gemm!($transA, $transB, one(T), _unbatch(A), _unbatch(B), zero(T), C)
C
end


end
end
47 changes: 47 additions & 0 deletions src/gemm.jl
Original file line number Diff line number Diff line change
Expand Up @@ -56,3 +56,50 @@ for (gemm, elt) in gemm_datatype_mappings
end
end
end

for (gemm, elt) in gemm_datatype_mappings
@eval begin
@inline function batched_gemm!(transA::AbstractChar,
transB::AbstractChar,
alpha::($elt),
A::AbstractArray{$elt, 3},
B::AbstractArray{$elt, 3},
beta::($elt),
C::AbstractArray{$elt, 3})
@assert !Base.has_offset_axes(A, B, C)
@assert size(A, 3) == size(B, 3) == size(C, 3) "batch size mismatch"
m = size(A, transA == 'N' ? 1 : 2)
ka = size(A, transA == 'N' ? 2 : 1)
kb = size(B, transB == 'N' ? 1 : 2)
n = size(B, transB == 'N' ? 2 : 1)
if ka != kb || m != size(C,1) || n != size(C,2)
throw(DimensionMismatch("A has size ($m,$ka), B has size ($kb,$n), C has size $(size(C))"))
end
LinearAlgebra.BLAS.chkstride1(A)
LinearAlgebra.BLAS.chkstride1(B)
LinearAlgebra.BLAS.chkstride1(C)

ptrA = Base.unsafe_convert(Ptr{$elt}, A)
ptrB = Base.unsafe_convert(Ptr{$elt}, B)
ptrC = Base.unsafe_convert(Ptr{$elt}, C)

for k in 1:size(A, 3)
ccall((@blasfunc($(gemm)), libblas), Nothing,
(Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt},
Ref{BlasInt}, Ref{$elt}, Ptr{$elt}, Ref{BlasInt},
Ptr{$elt}, Ref{BlasInt}, Ref{$elt}, Ptr{$elt},
Ref{BlasInt}),
transA, transB, m, n,
ka, alpha, ptrA, max(1,Base.stride(A,2)),
ptrB, max(1,Base.stride(B,2)), beta, ptrC,
max(1,Base.stride(C,2)))

ptrA += size(A, 1) * size(A, 2) * sizeof($elt)
ptrB += size(B, 1) * size(B, 2) * sizeof($elt)
ptrC += size(C, 1) * size(C, 2) * sizeof($elt)
end

C
end
end
end
47 changes: 47 additions & 0 deletions test/batchedmul.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
function bmm_test(a,b; transA = false, transB = false)
bs = size(a,3)
transA && (a = permutedims(a, [2,1,3]))
transB && (b = permutedims(b, [2,1,3]))
c = []
for i = 1:bs
push!(c, a[:,:,i]*b[:,:,i])
end

cat(c...; dims = 3)
end

function bmm_adjtest(a,b; adjA = false, adjB = false)
bs = size(a,3)
c = []
for i = 1:bs
ai = adjA ? adjoint(a[:,:,i]) : a[:,:,i]
bi = adjB ? adjoint(b[:,:,i]) : b[:,:,i]
push!(c, ai*bi)
end

cat(c...; dims = 3)
end

@testset "Batched Matrix Multiplication" begin
A = randn(7,5,3)
B = randn(5,7,3)
C = randn(7,6,3)

@test batched_mul(A, B) == bmm_test(A, B)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

add some tests for adjoint and ComplexF64?

@test batched_mul(batched_transpose(A), batched_transpose(B)) == bmm_test(A, B; transA = true, transB = true)
@test batched_mul(batched_transpose(A), C) == bmm_test(A, C; transA = true)
@test batched_mul(A, batched_transpose(A)) == bmm_test(A, A; transB = true)


cA = randn(Complex{Float64}, 7,5,3)
cB = randn(Complex{Float64}, 5,7,3)
cC = randn(Complex{Float64}, 7,6,3)

@test batched_mul(cA, cB) == bmm_adjtest(cA, cB)
@test batched_mul(batched_adjoint(cA), batched_adjoint(cB)) == bmm_adjtest(cA, cB; adjA = true, adjB = true)
@test batched_mul(batched_adjoint(cA), cC) == bmm_adjtest(cA, cC; adjA = true)
@test batched_mul(cA, batched_adjoint(cA)) == bmm_adjtest(cA, cA; adjB = true)

@test batched_transpose(batched_transpose(A)) == A
@test batched_adjoint(batched_adjoint(cA)) == cA
end
1 change: 1 addition & 0 deletions test/runtests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2,5 +2,6 @@ using NNlib, Test

include("activation.jl")
include("conv.jl")
include("batchedmul.jl")
include("pooling.jl")
include("inference.jl")