Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add MoE #1129

Merged
merged 4 commits into from
Mar 7, 2024
Merged

Add MoE #1129

Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
103 changes: 103 additions & 0 deletions configs/125M-moe.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,103 @@
# GPT-2 pretraining setup
{
# Have 4 experts per layer (every 2 layers by default)
Quentin-Anthony marked this conversation as resolved.
Show resolved Hide resolved
# So with 12 layers total:
# 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
# Experts would be in layers:
# 0, 2, 4, 6, 8, 10
"num_experts": 4,

# parallelism settings ( you will want to change these based on your cluster setup, ideally scheduling pipeline stages
# across the node boundaries )
"pipe_parallel_size": 1,
"model_parallel_size": 1,
"moe_expert_parallel_size": 1,

# model settings
"num_layers": 12,
"hidden_size": 768,
"num_attention_heads": 12,
"seq_length": 2048,
"max_position_embeddings": 2048,
"norm": "layernorm",
"pos_emb": "rotary",
"no_weight_tying": true,
"gpt_j_residual": false,
"output_layer_parallelism": "column",

# these should provide some speedup but takes a while to build, set to true if desired
"scaled_upper_triang_masked_softmax_fusion": false,
"bias_gelu_fusion": false,
"rope_fusion": false,

# init methods
"init_method": "small_init",
"output_layer_init_method": "wang_init",


# optimizer settings
"optimizer": {
"type": "Adam",
"params": {
"lr": 0.0006,
"betas": [0.9, 0.95],
"eps": 1.0e-8,
}
},
"min_lr": 0.00006,

# for all zero_optimization options, see https://www.deepspeed.ai/docs/config-json/#zero-optimizations-for-fp16-training
"zero_optimization": {
"stage": 1,
"allgather_partitions": True,
"allgather_bucket_size": 500000000,
"overlap_comm": True,
"reduce_scatter": True,
"reduce_bucket_size": 500000000,
"contiguous_gradients": True,
},

# batch / data settings
"train_micro_batch_size_per_gpu": 4,
"data_impl": "mmap",

# activation checkpointing
"checkpoint_activations": true,
"checkpoint_num_layers": 1,
"partition_activations": true,
"synchronize_each_layer": true,

# regularization
"gradient_clipping": 1.0,
"weight_decay": 0.1,
"hidden_dropout": 0.0,
"attention_dropout": 0.0,

# precision settings
"fp16": {
"enabled": true,
"loss_scale": 0,
"loss_scale_window": 1000,
"hysteresis": 2,
"min_loss_scale": 1
},

# misc. training settings
"train_iters": 320000,
"lr_decay_iters": 320000,
"distributed_backend": "nccl",
"lr_decay_style": "cosine",
"warmup": 0.01,
"checkpoint_factor": 10000,
"eval_interval": 1000,
"eval_iters": 10,

# logging
"log_interval": 10,
"steps_per_print": 10,
"keep_last_n_checkpoints": 4,
"wall_clock_breakdown": true,

# networking
"hostfile": "/mock_path"
}
98 changes: 97 additions & 1 deletion configs/neox_arguments.md
Original file line number Diff line number Diff line change
Expand Up @@ -111,7 +111,7 @@ Logging Arguments

- **git_hash**: str

Default = 2a3c4e1
Default = ae06be5

current git hash of repository

Expand Down Expand Up @@ -1007,6 +1007,14 @@ Parallelism Arguments



- **expert_interval**: int

Default = 2

Have one MoE layer every expert_interval layers



## NeoXArgsTemplate

NeoXArgsTemplate()
Expand Down Expand Up @@ -1128,6 +1136,94 @@ Text Generation arguments



- **moe_top_k**: int

Default = 1

Activate top K experts in MoE



- **use_tutel**: bool

Default = False

Use Tutel optimizations in MoE



- **num_experts**: int

Default = 1

Number of MoE experts



- **moe_loss_coeff**: float

Default = 0.1

Coefficient for MoE loss



- **moe_train_capacity_factor**: float

Default = 1.0

The capacity of the expert at train time



- **moe_eval_capacity_factor**: float

Default = 1.0

The capacity of the expert at eval time



- **moe_min_capacity**: int

Default = 4

The minimum capacity per expert regardless of the capacity_factor



- **moe_token_dropping**: bool

Default = True

Whether to drop tokens when exceeding capacity



- **create_moe_param_group**: bool

Default = True

Whether to create a separate parameter group for MoE parameters



- **moe_use_residual**: bool

Default = True

Whether to use residual in MoE



- **moe_expert_parallel_size**: int

Default = 1

Number of parallel experts in MoE



## NeoXArgsTokenizer

Tokenizer Arguments
Expand Down
Loading