Skip to content

On-device Inference of Diffusion Models for Apple Silicon

License

Notifications You must be signed in to change notification settings

EduardoPach/DiffusionKit

 
 

Repository files navigation

DiffusionKit

Latest Python Version

Run Diffusion Models on Apple Silicon with Core ML and MLX

This repository comprises

  • diffusionkit, a Python package for converting PyTorch models to Core ML format and performing image generation with MLX in Python
  • DiffusionKit, a Swift package for on-device inference of diffusion models using Core ML and MLX

Installation

The following installation steps are required for:

  • MLX inference
  • PyTorch to Core ML model conversion

Python Environment Setup

conda create -n diffusionkit python=3.11 -y
conda activate diffusionkit
cd /path/to/diffusionkit/repo
pip install -e .

Hugging Face Hub Credentials

Click to expand

Stable Diffusion 3 requires users to accept the terms before downloading the checkpoint.

FLUX.1-dev also requires users to accept the terms before downloading the checkpoint.

Once you accept the terms, sign in with your Hugging Face hub READ token as below:

[!IMPORTANT] If using a fine-grained token, it is also necessary to edit permissions to allow Read access to contents of all public gated repos you can access

huggingface-cli login --token YOUR_HF_HUB_TOKEN

Converting Models from PyTorch to Core ML

Click to expand

Step 1: Follow the installation steps from the previous section

Step 2: Verify you've accepted the StabilityAI license terms and have allowed gated access on your HuggingFace token

Step 3: Prepare the denoise model (MMDiT) Core ML model files (.mlpackage)

python -m python.src.diffusionkit.tests.torch2coreml.test_mmdit --sd3-ckpt-path stabilityai/stable-diffusion-3-medium --model-version 2b -o <output-mlpackages-directory> --latent-size {64, 128}

Step 4: Prepare the VAE Decoder Core ML model files (.mlpackage)

python -m python.src.diffusionkit.tests.torch2coreml.test_vae --sd3-ckpt-path stabilityai/stable-diffusion-3-medium -o <output-mlpackages-directory> --latent-size {64, 128}

Note:

  • --sd3-ckpt-path can be a path any HuggingFace repo (e.g. stabilityai/stable-diffusion-3-medium) OR a path to a local sd3_medium.safetensors file

Image Generation with Python MLX

Click to expand

CLI

Most simple:

diffusionkit-cli --prompt "a photo of a cat" --output-path </path/to/output/image.png>

Some notable optional arguments for:

  • Reproduciblity of results, use --seed
  • image-to-image, use --image-path (path to input image) and --denoise (value between 0. and 1.)
  • Enabling T5 encoder in SD3, use --t5 (FLUX must use T5 regardless of this argument)
  • Different resolutions, use --height and --width
  • Using a local checkpoint, use --local-ckpt </path/to/ckpt.safetensors> (e.g. ~/models/stable-diffusion-3-medium/sd3_medium.safetensors).

Please refer to the help menu for all available arguments: diffusionkit-cli -h.

Note: When using FLUX.1-dev, verify you've accepted the FLUX.1-dev licence and have allowed gated access on your HuggingFace token

Code

For Stable Diffusion 3:

from diffusionkit.mlx import DiffusionPipeline
pipeline = DiffusionPipeline(
  shift=3.0,
  use_t5=False,
  model_version="argmaxinc/mlx-stable-diffusion-3-medium",
  low_memory_mode=True,
  a16=True,
  w16=True,
)

For FLUX:

from diffusionkit.mlx import FluxPipeline
pipeline = FluxPipeline(
  shift=1.0,
  model_version="argmaxinc/mlx-FLUX.1-schnell", # model_version="argmaxinc/mlx-FLUX.1-dev" for FLUX.1-dev
  low_memory_mode=True,
  a16=True,
  w16=True,
)

Finally, to generate the image, use the generate_image() function:

HEIGHT = 512
WIDTH = 512
NUM_STEPS = 4  #  4 for FLUX.1-schnell, 50 for SD3 and FLUX.1-dev
CFG_WEIGHT = 0. # for FLUX.1-schnell, 5. for SD3

image, _ = pipeline.generate_image(
  "a photo of a cat",
  cfg_weight=CFG_WEIGHT,
  num_steps=NUM_STEPS,
  latent_size=(HEIGHT // 8, WIDTH // 8),
)

Some notable optional arguments:

  • For image-to-image, use image_path (path to input image) and denoise (value between 0. and 1.) input variables.
  • For seed, use seed input variable.
  • For negative prompt, use negative_text input variable.

The generated image can be saved with:

image.save("path/to/save.png")

Image Generation with Swift

Click to expand

Core ML Swift

Apple Core ML Stable Diffusion is the initial Core ML backend for DiffusionKit. Stable Diffusion 3 support is upstreamed to that repository while we build the holistic Swift inference package.

MLX Swift

🚧

License

DiffusionKit is released under the MIT License. See LICENSE for more details.

Citation

If you use DiffusionKit for something cool or just find it useful, please drop us a note at [email protected]!

If you use DiffusionKit for academic work, here is the BibTeX:

@misc{diffusionkit-argmax,
   title = {DiffusionKit},
   author = {Argmax, Inc.},
   year = {2024},
   URL = {https://github.com/argmaxinc/DiffusionKit}
}

About

On-device Inference of Diffusion Models for Apple Silicon

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 97.3%
  • Swift 1.5%
  • Makefile 1.2%