This repository contains the source code for the Eclipse Paho MQTT C client library.
This code builds libraries which enable applications to connect to an MQTT broker to publish messages, and to subscribe to topics and receive published messages.
Both synchronous and asynchronous modes of operation are supported.
The Paho C client comprises four shared libraries:
- libmqttv3a.so - asynchronous
- libmqttv3as.so - asynchronous with SSL
- libmqttv3c.so - "classic" / synchronous
- libmqttv3cs.so - "classic" / synchronous with SSL
Optionally, using the CMake build, you can build static versions of those libraries.
Ensure the OpenSSL development package is installed. Then from the client library base directory run:
make
sudo make install
This will build and install the libraries. To uninstall:
sudo make uninstall
To build the documentation requires doxygen and optionally graphviz.
make html
The provided GNU Makefile is intended to perform all build steps in the build
directory within the source-tree of Eclipse Paho. Generated binares, libraries, and the documentation can be found in the build/output
directory after completion.
Options that are passed to the compiler/linker can be specified by typical Unix build variables:
Variable | Description |
---|---|
CC | Path to the C compiler |
CFLAGS | Flags passed to compiler calls |
LDFLAGS | Flags passed to linker calls |
There build process currently supports a number of Linux "flavors" including ARM and s390, OS X, AIX and Solaris as well as the Windows operating system. The build process requires the following tools:
- CMake (http://cmake.org)
- Ninja (https://martine.github.io/ninja/) or GNU Make (https://www.gnu.org/software/make/), and
- gcc (https://gcc.gnu.org/).
On Debian based systems this would mean that the following packages have to be installed:
apt-get install build-essential gcc make cmake cmake-gui cmake-curses-gui
Also, in order to build a debian package from the source code, the following packages have to be installed
apt-get install fakeroot fakeroot devscripts dh-make lsb-release
Ninja can be downloaded from its github project page in the "releases" section. Optionally it is possible to build binaries with SSL support. This requires the OpenSSL libraries and includes to be available. E. g. on Debian:
apt-get install libssl-dev
The documentation requires doxygen and optionally graphviz:
apt-get install doxygen graphviz
Before compiling, determine the value of some variables in order to configure features, library locations, and other options:
Variable | Default Value | Description |
---|---|---|
PAHO_BUILD_STATIC | FALSE | Build a static version of the libraries |
PAHO_WITH_SSL | FALSE | Flag that defines whether to build ssl-enabled binaries too. |
OPENSSL_SEARCH_PATH | "" (system default) | Directory containing your OpenSSL installation (i.e. /usr/local when headers are in /usr/local/include and libraries are in /usr/local/lib ) |
PAHO_BUILD_DOCUMENTATION | FALSE | Create and install the HTML based API documentation (requires Doxygen) |
PAHO_BUILD_SAMPLES | FALSE | Build sample programs |
MQTT_TEST_BROKER | tcp://localhost:1883 | MQTT connection URL for a broker to use during test execution |
MQTT_TEST_PROXY | tcp://localhost:1883 | Hostname of the test proxy to use |
MQTT_SSL_HOSTNAME | localhost | Hostname of a test SSL MQTT broker to use |
PAHO_BUILD_DEB_PACKAGE | FALSE | Build debian package |
Using these variables CMake can be used to generate your Ninja or Make files. Using CMake, building out-of-source is the default. Therefore it is recommended to invoke all build commands inside your chosen build directory but outside of the source tree.
An example build session targeting the build platform could look like this:
mkdir /tmp/build.paho
cd /tmp/build.paho
cmake -GNinja -DPAHO_WITH_SSL=TRUE -DPAHO_BUILD_DOCUMENTATION=TRUE -DPAHO_BUILD_SAMPLES=TRUE ~/git/org.eclipse.paho.mqtt.c
Invoking cmake and specifying build options can also be performed using cmake-gui or ccmake (see https://cmake.org/runningcmake/). For example:
ccmake -GNinja ~/git/org.eclipse.paho.mqtt.c
To compile/link the binaries and to generate packages, simply invoke ninja package
or make -j <number-of-cores-to-use> package
after CMake. To simply compile/link invoke ninja
or make -j <number-of-cores-to-use>
.
Debug builds can be performed by defining the value of the CMAKE_BUILD_TYPE
option to Debug
. For example:
cmake -GNinja -DCMAKE_BUILD_TYPE=Debug git/org.eclipse.paho.mqtt.c
Test code is available in the test
directory. The tests can be built and executed with the CMake build system. The test execution requires a MQTT broker running. By default, the build system uses localhost
, however it is possible to configure the build to use an external broker. These parameters are documented in the Build Requirements section above.
After ensuring a MQTT broker is available, it is possible to execute the tests by starting the proxy and running ctest
as described below:
python ../test/mqttsas2.py &
ctest -VV
Cross compilation using CMake is performed by using so called "toolchain files" (see: http://www.vtk.org/Wiki/CMake_Cross_Compiling).
The path to the toolchain file can be specified by using CMake's -DCMAKE_TOOLCHAIN_FILE
option. In case no toolchain file is specified, the build is performed for the native build platform.
For your convenience toolchain files for the following platforms can be found in the cmake
directory of Eclipse Paho:
- Linux x86
- Linux ARM11 (a.k.a. the Raspberry Pi)
- Windows x86_64
- Windows x86
The provided toolchain files assume that required compilers/linkers are to be found in the environment, i. e. the PATH-Variable of your user or system. If you prefer, you can also specify the absolute location of your compilers in the toolchain files.
Example invocation for the Raspberry Pi:
cmake -GNinja -DPAHO_WITH_SSL=TRUE -DPAHO_BUILD_SAMPLES=TRUE -DPAHO_BUILD_DOCUMENTATION=TRUE -DOPENSSL_LIB_SEARCH_PATH=/tmp/libssl-dev/usr/lib/arm-linux-gnueabihf -DOPENSSL_INC_SEARCH_PATH="/tmp/libssl-dev/usr/include/openssl;/tmp/libssl-dev/usr/include/arm-linux-gnueabihf" -DCMAKE_TOOLCHAIN_FILE=~/git/org.eclipse.paho.mqtt.c/cmake/toolchain.linux-arm11.cmake ~/git/org.eclipse.paho.mqtt.c
Compilers for the Raspberry Pi can be obtained from e. g. Linaro (see: http://releases.linaro.org/15.06/components/toolchain/binaries/4.8/arm-linux-gnueabihf/). This example assumes that OpenSSL-libraries and includes have been installed in the /tmp/libssl-dev
directory.
Example invocation for Windows 64 bit:
cmake -GNinja -DPAHO_BUILD_SAMPLES=TRUE -DCMAKE_TOOLCHAIN_FILE=~/git/org.eclipse.paho.mqtt.c/cmake/toolchain.win64.cmake ~/git/org.eclipse.paho.mqtt.c
In this case the libraries and executable are not linked against OpenSSL Libraries. Cross compilers for the Windows platform can be installed on Debian like systems like this:
apt-get install gcc-mingw-w64-x86-64 gcc-mingw-w64-i686
Detailed API documentation is available by building the Doxygen docs in the doc
directory. A snapshot is also available online.
Samples are available in the Doxygen docs and also in src/samples
for reference.
Note that using the C headers from a C++ program requires the following declaration as part of the C++ code:
extern "C" {
#include "MQTTClient.h"
#include "MQTTClientPersistence.h"
}
A number of environment variables control runtime tracing of the C library.
Tracing is switched on using MQTT_C_CLIENT_TRACE
(a value of ON traces to stdout, any other value should specify a file to trace to).
The verbosity of the output is controlled using the MQTT_C_CLIENT_TRACE_LEVEL
environment variable - valid values are ERROR, PROTOCOL, MINIMUM, MEDIUM and MAXIMUM (from least to most verbose).
The variable MQTT_C_CLIENT_TRACE_MAX_LINES
limits the number of lines of trace that are output.
export MQTT_C_CLIENT_TRACE=ON
export MQTT_C_CLIENT_TRACE_LEVEL=PROTOCOL
Please open issues in the Github project: https://github.com/eclipse/paho.mqtt.c/issues.
Discussion of the Paho clients takes place on the Eclipse paho-dev mailing list.
General questions about the MQTT protocol are discussed in the MQTT Google Group.
There is much more information available via the MQTT community site.