The methods have been published in the following papers. If you use the codes in your experiments, feel free to cite all of them:
[1] Simo Särkkä and Ángel F. García-Fernández (2023). Temporal Parallelisation of Dynamic Programming and Linear Quadratic Control. IEEE Transactions on Automatic Control. Volume 68, Issue 2, 851-866.
- Open access: https://ieeexplore.ieee.org/document/9697418
- arXiv: https://arxiv.org/abs/2104.03186
@article{Sarkka_et_al_2023,
author={S\"arkk\"a, Simo and Garc\'ia-Fern\'andez, \'Angel F.},
journal={IEEE Transactions on Automatic Control},
title={Temporal Parallelization of Dynamic Programming and Linear Quadratic Control},
year={2023},
volume={68},
number={2},
pages={851-866},
doi={10.1109/TAC.2022.3147017}
}
[2] Simo Särkkä and Ángel F. García-Fernández (2023). On The Temporal Parallelisation of The Viterbi Algorithm. To appear in proceedings of EUSIPCO.
@inproceedings{Sarkka_et_al_2023b,
author={S\"arkk\"a, Simo and Garc\'ia-Fern\'andez, \'Angel F.},
booktitle={Proceedings of EUSIPCO},
title={On The Temporal Parallelisation of The Viterbi Algorithm},
year={2023},
}
[3] Simo Särkkä, Ángel F. García-Fernández. Temporal Parallelisation of the HJB Equation and Continuous-Time Linear Quadratic Control. arXiv:2212.11744
@misc{Sarkka_et_al_202x,
author={S\"arkk\"a, Simo and Garc\'ia-Fern\'andez, \'Angel F.},
note={arXiv:2212.11744},
title={Temporal Parallelisation of the HJB Equation and Continuous-Time Linear Quadratic Control},
}
Clone the repository:
% git clone [email protected]:EEA-sensors/parallel-control-codes.git
Make conda environment and install the package:
% conda create --name parcon python=3.9
% conda activate parcon
% cd parallel-control-codes
% pip install .
Connect to jupyter-lab is you feel like it:
% conda install jupyterlab
% conda install -c anaconda ipykernel
% python -m ipykernel install --user --name=parcon
% jupyter-lab notebooks/ &
Directory notebooks/ contains messy examples that you can run in jupyterlab -- these are far from being complete, but still demonstrate how to use the routines:
contlin_demo.ipynb
finite_demo.ipynb
linear_demo.ipynb
lqr_iter_demo.ipynb
mass_demo.ipynb
nonlinear_demo.ipynb
viterbi_ge_demo.ipynb
Directories experiments-bellman/, experiments-viterbi/, and experiments-hjb contain scripts for running speed experiments. They would work just like:
% cd experiments-bellman
% mkdir -p res
% sh cpu_tracking_1.sh
The following papers are closely related to the present ones:
[4] Sakira Hassan, Simo Särkkä, Ángel F. García-Fernández (2021). Temporal Parallelization of Inference in Hidden Markov Models. IEEE Transactions on Signal Processing, Volume 69, Pages 4875-4887.
- Open access: https://doi.org/10.1109/TSP.2021.3103338
- arXiv: https://arxiv.org/abs/2102.05743
- Code: https://github.com/EEA-sensors/sequential-parallelization-examples/tree/main/python/temporal-parallelization-inference-in-HMMs
[5] Simo Särkkä and Ángel F. García-Fernández (2021). Temporal Parallelization of Bayesian Smoothers. IEEE Transactions on Automatic Control, Volume 66, Issue 1, Pages 299-306.
- arXiv: https://arxiv.org/abs/1905.13002
- Code: https://github.com/EEA-sensors/sequential-parallelization-examples/tree/main/python/temporal-parallelization-bayes-smoothers
Furthermore, a good source for all kinds of classical filters and smoothers is the following textbook:
[6] Simo Särkkä and Lennart Svensson (2023). Bayesian Filtering and Smoothing, Second Edition. Cambridge University Press.
- Open access: http://users.aalto.fi/~ssarkka/pub/bfs_book_2023_online.pdf
- Code: https://github.com/EEA-sensors/Bayesian-Filtering-and-Smoothing
Kalman filters, RTS smoothers, and LQT regulators are closely related in two ways:
- Kalman filter and RTS smoother are "duals" of LQT.
- Kalman filter and RTS smoother can be derived as a special case of Viterbi algorithm for a linear Gaussian state-space model.
Exercise: Use the parallel LQT codes in this repository to implement parallel Kalman filters and smoothers introduced in [5] using one or both of the points of view above.