-
Notifications
You must be signed in to change notification settings - Fork 155
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
142 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,142 @@ | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
from rl_games.common import networks | ||
from rl_games.common import layers | ||
|
||
class MoENet(networks.NetworkBuilder.BaseNetwork): | ||
def __init__(self, params, **kwargs): | ||
nn.Module.__init__(self) | ||
actions_num = kwargs.pop('actions_num') | ||
input_shape = kwargs.pop('input_shape') | ||
num_inputs = 0 | ||
|
||
self.central_value = params.get('central_value', False) | ||
self.value_size = kwargs.pop('value_size', 1) | ||
|
||
# Parameters from params | ||
num_experts = params.get('num_experts', 3) | ||
hidden_size = params.get('hidden_size', 128) | ||
gating_hidden_size = params.get('gating_hidden_size', 64) | ||
self.use_sparse_gating = params.get('use_sparse_gating', False) | ||
self.top_k = params.get('top_k', 1) | ||
self.lambda_entropy = params.get('lambda_entropy', 0.01) | ||
self.lambda_diversity = params.get('lambda_diversity', 0.01) | ||
|
||
# Input processing | ||
assert isinstance(input_shape, dict), "Input shape must be a dict" | ||
for k, v in input_shape.items(): | ||
num_inputs += v[0] | ||
|
||
# Gating Network | ||
self.gating_fc1 = nn.Linear(num_inputs, gating_hidden_size) | ||
self.gating_fc2 = nn.Linear(gating_hidden_size, num_experts) | ||
|
||
# Expert Networks | ||
self.expert_networks = nn.ModuleList([ | ||
nn.Sequential( | ||
nn.Linear(num_inputs, hidden_size), | ||
nn.ReLU(), | ||
nn.Linear(hidden_size, hidden_size), | ||
nn.ReLU(), | ||
nn.Linear(hidden_size, hidden_size), | ||
nn.ReLU(), | ||
) for _ in range(num_experts) | ||
]) | ||
|
||
# Output layers | ||
self.mean_linear = nn.Linear(hidden_size, actions_num) | ||
self.value = nn.Linear(hidden_size, self.value_size) | ||
|
||
# Auxiliary loss map | ||
self.aux_loss_map = { | ||
'entropy_loss': None, | ||
'diversity_loss': None, | ||
} | ||
|
||
def is_rnn(self): | ||
return False | ||
|
||
def get_aux_loss(self): | ||
return self.aux_loss_map | ||
|
||
def forward(self, obs_dict): | ||
# Combine observations | ||
obs = [] | ||
for k in obs_dict: | ||
obs.append(obs_dict[k]) | ||
obs = torch.cat(obs, dim=-1) | ||
|
||
# Gating Network Forward Pass | ||
gating_x = F.relu(self.gating_fc1(obs)) | ||
gating_logits = self.gating_fc2(gating_x) # Shape: [batch_size, num_experts] | ||
gating_weights = F.softmax(gating_logits, dim=1) | ||
|
||
# Apply Sparse Gating if enabled | ||
if self.use_sparse_gating: | ||
topk_values, topk_indices = torch.topk(gating_weights, self.top_k, dim=1) | ||
sparse_mask = torch.zeros_like(gating_weights) | ||
sparse_mask.scatter_(1, topk_indices, topk_values) | ||
gating_weights = sparse_mask / sparse_mask.sum(dim=1, keepdim=True) # Re-normalize | ||
|
||
# Compute Entropy Loss for Gating Weights | ||
entropy = -torch.sum(gating_weights * torch.log(gating_weights + 1e-8), dim=1) | ||
entropy_loss = torch.mean(entropy) | ||
self.aux_loss_map['entropy_loss'] = self.lambda_entropy * entropy_loss | ||
|
||
# Expert Networks Forward Pass | ||
expert_outputs = [] | ||
for expert in self.expert_networks: | ||
expert_outputs.append(expert(obs)) # Each output shape: [batch_size, hidden_size] | ||
expert_outputs = torch.stack(expert_outputs, dim=1) # Shape: [batch_size, num_experts, hidden_size] | ||
|
||
# Compute Diversity Loss | ||
diversity_loss = 0.0 | ||
num_experts = len(self.expert_networks) | ||
for i in range(num_experts): | ||
for j in range(i + 1, num_experts): | ||
similarity = F.cosine_similarity(expert_outputs[:, i, :], expert_outputs[:, j, :], dim=-1) | ||
diversity_loss += torch.mean(similarity) | ||
num_pairs = num_experts * (num_experts - 1) / 2 | ||
diversity_loss = diversity_loss / num_pairs | ||
self.aux_loss_map['diversity_loss'] = self.lambda_diversity * diversity_loss | ||
|
||
# Aggregate Expert Outputs | ||
gating_weights = gating_weights.unsqueeze(-1) # Shape: [batch_size, num_experts, 1] | ||
aggregated_output = torch.sum(gating_weights * expert_outputs, dim=1) # Shape: [batch_size, hidden_size] | ||
|
||
out = aggregated_output | ||
value = self.value_act(self.value(out)) | ||
states = None | ||
if self.central_value: | ||
return value, states | ||
|
||
if self.is_discrete: | ||
logits = self.logits(out) | ||
return logits, value, states | ||
if self.is_multi_discrete: | ||
logits = [logit(out) for logit in self.logits] | ||
return logits, value, states | ||
if self.is_continuous: | ||
mu = self.mu_act(self.mu(out)) | ||
if self.fixed_sigma: | ||
sigma = self.sigma_act(self.sigma) | ||
else: | ||
sigma = self.sigma_act(self.sigma(out)) | ||
return mu, mu*0 + sigma, value, states | ||
|
||
|
||
from rl_games.algos_torch.network_builder import NetworkBuilder | ||
|
||
class MoENetBuilder(NetworkBuilder): | ||
def __init__(self, **kwargs): | ||
NetworkBuilder.__init__(self) | ||
|
||
def load(self, params): | ||
self.params = params | ||
|
||
def build(self, name, **kwargs): | ||
return MoENet(self.params, **kwargs) | ||
|
||
def __call__(self, name, **kwargs): | ||
return self.build(name, **kwargs) |