Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fixed the issue where autocompare reports input is modified in situations like torch.exp(x, out=x) #72

Merged
merged 1 commit into from
Oct 25, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 4 additions & 1 deletion op_tools/op_autocompare_hook.py
Original file line number Diff line number Diff line change
Expand Up @@ -148,8 +148,11 @@ def run_forward_on_cpu(self):
dtype_cast_dict=self.dtype_cast_dict,
detach=True,
)
if self.kwargs.get("out", None) is not None and self.kwargs["out"] in self.args and isinstance(self.kwargs["out"], torch.Tensor):
self.kwargs_cpu["out"] = self.args_cpu[self.args.index(self.kwargs["out"])]

# RuntimeError: a leaf Variable that requires grad is being used in an in-place operation.
if (is_inplace_op(self.name) or self.kwargs.get("inplace", False) or is_view_op(self.name)) and self.args[0].requires_grad:
if (is_inplace_op(self.name, *self.args, **self.kwargs) or is_view_op(self.name)) and self.args[0].requires_grad:
args_cpu = [item for item in self.args_cpu]
args_cpu[0] = args_cpu[0].clone()
self.args_cpu = tuple(args_cpu)
Expand Down
6 changes: 5 additions & 1 deletion op_tools/pretty_print.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,6 +43,10 @@ def packect_data_to_dict_list(op_name, inputs_dict):
elif isinstance(arg, (str, int, float, bool)):
data_dict_list.append({"name": op_name + (f"[{arg_index}]" if len(args) > 1 else ""), "value": arg})
for key, value in kwargs.items():
data_dict_list.append({"name": op_name + f" {key}", "value": value})
if isinstance(value, dict):
value.update({"name": op_name + f" {key}"})
data_dict_list.append(value)
else:
data_dict_list.append({"name": op_name + f" {key}", "value": value})

return data_dict_list
5 changes: 5 additions & 0 deletions op_tools/test/test_tool_with_special_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -196,6 +196,11 @@ def test_torch_tensor_device(self):
x = torch.tensor(0, dtype=torch.int32, device="cuda")
self.assertTrue(x.device.type == "cuda")

def test_input_is_output(self):
with op_tools.OpAutoCompare():
x = torch.randn(3, 4, 5, dtype=torch.float32, device="cuda", requires_grad=False)
torch.exp(x, out=x)


if __name__ == "__main__":
unittest.main()
6 changes: 5 additions & 1 deletion op_tools/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -125,7 +125,11 @@ def is_opname_match(name, op_pattern=None):
return False


def is_inplace_op(name):
def is_inplace_op(name, *args, **kwargs):
if kwargs.get("out", None) is not None and isinstance(kwargs["out"], torch.Tensor) and kwargs["out"] in args:
return True
if kwargs.get("inplace", False):
return True
INPLACES_OP = ["torch.Tensor.__setitem__", "torch.Tensor.to", "torch.Tensor.contiguous", "torch.Tensor.to"]
return name in INPLACES_OP or (name.endswith("_") and (not name.endswith("__")) and (name.startswith("torch.Tensor.")))

Expand Down