Skip to content

CopilotKit/with-a2a-middleware

Repository files navigation

A2A + AG-UI Multi-Agent Starter

A minimal starter template for building multi-agent applications with A2A Protocol (Agent-to-Agent) and AG-UI Protocol (Agent-UI). This project demonstrates how to coordinate multiple AI agents across different frameworks (LangGraph and Google ADK) to solve tasks collaboratively.

Screenshot of a demo

Quick Start

Prerequisites

Installation

  1. Install frontend dependencies:
npm install
  1. Install Python dependencies:
cd agents
python3 -m venv .venv
source .venv/bin/activate  # On Windows: .venv\Scripts\activate
pip install -r requirements.txt
cd ..
  1. Set up environment variables:
cp .env.example .env
# Edit .env and add your API keys:
# GOOGLE_API_KEY=your_google_api_key
# OPENAI_API_KEY=your_openai_api_key
  1. Start all services:
npm run dev

This will start:

Usage

Try asking:

  • "Research quantum computing"
  • "Tell me about artificial intelligence"
  • "Research renewable energy"

The orchestrator will:

  1. Send your query to the Research Agent to gather information
  2. Pass the research to the Analysis Agent for insights
  3. Present a complete summary with both research and analysis

Development Scripts

# Start everything
npm run dev

# Start individual services
npm run dev:ui           # Next.js UI only
npm run dev:orchestrator # Orchestrator only
npm run dev:research     # Research agent only
npm run dev:analysis     # Analysis agent only

# Build for production
npm run build

# Lint code
npm run lint

Customization

Adding New Agents

  1. Create a new Python agent in agents/:

    • Implement A2A Protocol (see existing agents as examples)
    • Choose a port (e.g., 9003)
    • Define agent capabilities and skills
  2. Register in middleware (app/api/copilotkit/route.ts):

    const newAgentUrl = "http://localhost:9003";
    
    const a2aMiddlewareAgent = new A2AMiddlewareAgent({
      agentUrls: [
        researchAgentUrl,
        analysisAgentUrl,
        newAgentUrl, // Add here
      ],
      // ...
    });
  3. Add run script in package.json:

    "dev:newagent": "python3 agents/new_agent.py"
  4. Update concurrently command to include your new agent

Changing UI

  • Main page: Edit app/page.tsx for layout and result display
  • Chat: Edit components/chat.tsx for chat behavior
  • Styling: Edit app/globals.css and tailwind.config.ts
  • A2A badges: Edit components/a2a/ components

What This Demonstrates

This starter shows how specialized agents built with different frameworks can communicate via the A2A protocol:

Architecture

┌──────────────────────────────────────────┐
│ Next.js UI (CopilotKit)                  │
└────────────┬─────────────────────────────┘
             │ AG-UI Protocol
┌────────────┴─────────────────────────────┐
│ A2A Middleware                            │
│ - Routes messages between agents          │
└──────┬───────────────────────────────────┘
       │ A2A Protocol
       │
       ├─────► Research Agent (LangGraph)
       │       - Gathers information
       │       - Port 9001
       │
       └─────► Analysis Agent (ADK)
               - Analyzes findings
               - Port 9002
       ▲
       │
┌──────┴──────────┐
│ Orchestrator    │
│ (ADK)           │
│ Port 9000       │
└─────────────────┘

Agents

  1. Orchestrator (ADK + AG-UI Protocol)

    • Receives requests from the UI
    • Coordinates specialized agents
    • Port: 9000
  2. Research Agent (LangGraph + A2A Protocol)

    • Gathers and summarizes information
    • Returns structured JSON
    • Port: 9001
  3. Analysis Agent (ADK + A2A Protocol)

    • Analyzes research findings
    • Provides insights and conclusions
    • Port: 9002

Project Structure

starter/
├── app/
│   ├── api/copilotkit/route.ts       # A2A middleware setup (KEY FILE!)
│   ├── layout.tsx                     # Root layout
│   ├── globals.css                    # Styles
│   └── page.tsx                       # Main UI
│
├── components/
│   ├── chat.tsx                       # Chat component with A2A visualization
│   └── a2a/                           # A2A message components
│       ├── agent-styles.ts            # Agent branding utilities
│       ├── MessageToA2A.tsx           # Outgoing message badges
│       └── MessageFromA2A.tsx         # Incoming message badges
│
├── agents/                            # Python agents
│   ├── orchestrator.py                # Orchestrator (ADK + AG-UI) - Port 9000
│   ├── research_agent.py              # Research (LangGraph + A2A) - Port 9001
│   ├── analysis_agent.py              # Analysis (ADK + A2A) - Port 9002
│   └── requirements.txt               # Python dependencies
│
├── package.json                       # Frontend dependencies & scripts
├── .env.example                       # Environment variables template
└── README.md                          # This file

Key Concepts

AG-UI Protocol

The AG-UI Protocol standardizes communication between the frontend (CopilotKit) and agents. The orchestrator uses AG-UI to receive messages from the UI.

A2A Protocol

The A2A Protocol standardizes agent-to-agent communication. The Research and Analysis agents use A2A to communicate with the orchestrator.

A2A Middleware

The A2A Middleware (in app/api/copilotkit/route.ts) is the magic that connects everything:

  • Wraps the orchestrator agent
  • Registers A2A agents automatically
  • Injects a send_message_to_a2a_agent tool into the orchestrator
  • Routes messages between agents

Troubleshooting

Agents not connecting?

  • Verify all services are running: http://localhost:9000-9002
  • Check console for startup errors

Missing API keys?

  • Ensure .env file exists with GOOGLE_API_KEY and OPENAI_API_KEY
  • Restart all services after adding keys

Python import errors?

  • Activate virtual environment: source agents/.venv/bin/activate
  • Reinstall dependencies: pip install -r agents/requirements.txt

Port conflicts?

  • Change ports in .env file:
    ORCHESTRATOR_PORT=9000
    RESEARCH_PORT=9001
    ANALYSIS_PORT=9002
    

Learn More

License

MIT

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published