Skip to content

ConnectAI-E/Feishu-Webhook-Proxy

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

48 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Feishu(Lark)-Webhook-Proxy

  1. 将飞书(lark)webhook代理成websocket
  2. 企业自建应用不用创建公网的回调地址,直接本地使用websocket客户端连上这个转发地址

设计

  1. 使用nchan维护websocket的连接
  2. 将飞书的回调消息,抽取飞书相关的头信息,外面包一层json,使用X-Request-Id作为唯一ID,推送给对应的channel,如果连接对应websocket的客户端回复了X-Request-Id对应的消息,就回复给飞书(这里主要用于第一次配置回调)
  3. 客户端自己保存飞书的密钥信息,从转发服务走的消息都是加密的。
  4. 客户端调用飞书其他接口,直接走自己的网络

安全性

  1. 飞书回调消息都是加密的,只能由websocket客户端自己解密,转发服务是透明的。
  2. 如何确保自己的channel不会被别人恶意使用?

使用nginx basic auth,nchan支持auth_request,在对应的request里面使用basic auth就能做校验

实现

  • 部署一个nchan(openresty版本)
  • 配置一个internal的location,给内部转发飞书消息使用
  • 配置一个location,作为飞书webhook转发(处理消息转发逻辑,如果是配置连接,就重定向到request_id对应的channel等待客户端返回challenge给飞书)

organization

使用一个organization对当前组织下面的所有bot进行管理 这样所有的消息可以通过org_<name>一个channel推送,这种模式下启动服务的时候可以不用提前注册所有的bot,可以动态的加入新的bot进去

  • 对org_的channel增加basic auth
  • hook链接转发消息兼容organization
  • 新增一个支持organization的client
client = Client(bot1, bot2, org_name='org_lloyd', org_passwd='passwd')

使用

python sdk

pip install ca-lark-websocket

from connectai.lark.websocket import *

class MyBot(Bot):
    def on_message(self, data, raw_message, **kwargs):
        # 定义每一个机器人拿到消息后的处理逻辑
        print('on_message', self.app_id, data, raw_message)
        if 'header' in data:
            if data['header']['event_type'] == 'im.message.receive_v1' and data['event']['message']['message_type'] == 'text':
                message_id = data['event']['message']['message_id']
                content = json.loads(data['event']['message']['content'])
                text = content['text']
                # 测试回复消息,初始化bot的时候,需要配置app_secret才能发出去消息
                self.reply_text(message_id, 'reply: ' + text)
                # 回复卡片消息
                self.reply_card(message_id, FeishuMessageCard(
                    FeishuMessageDiv('reply'),
                    FeishuMessageHr(),
                    FeishuMessageDiv(text),
                    FeishuMessageNote(FeishuMessagePlainText('🤖'))
                ))

bot1 = MyBot('cli_xxx', app_secret='xxx', encrypt_key='xxx')
bot2 = MyBot('cli_xxx', app_secret='xxx', encrypt_key='xxx')

# 一个websocket连接,支持同时监听多个机器人回调消息
client = Client(bot1, bot2)
client.start()

集成openai

test_openai.py文件中

  1. 继承Bot增加自己处理消息的回调
class TextMessageBot(Bot):
    def on_message(self, data, *args, **kwargs):
        if 'header' in data:
            if data['header']['event_type'] == 'im.message.receive_v1' and data['event']['message']['message_type'] == 'text':
                content = json.loads(data['event']['message']['content'])
                if self.app:
                    return self.app.process_text_message(text=content['text'], **data['event']['message'])


  1. 写一个应用:处理文本消息
class Application(object):
    def process_text_message(self, text, message_id, **kwargs):
        if text == '/help' or text == '帮助':
            self.bot.reply_card(
                message_id,
                FeishuMessageCard(
                    FeishuMessageDiv('👋 你好呀,我是一款基于OpenAI技术的智能聊天机器人'),
                    FeishuMessageHr(),
                    FeishuMessageDiv('🎒 **需要更多帮助**\n文本回复 *帮助* 或 */help*', tag='lark_md'),
                    header=FeishuMessageCardHeader('🎒需要帮助吗?'),
                )
            )
        elif text:
            chat = ChatOpenAI(
                callbacks=[OpenAICallbackHandler(self.bot, message_id)],
                **self.openai_options
            )
            system_message = [SystemMessage(content=self.system_role)] if self.system_role else []
            chat_history = []  # TODO
            messages = system_message + chat_history + [HumanMessage(content=text)]
            message = chat(messages)
            logging.debug("reply message %r", message)
        else:
            logging.warn("empty text", text)
  1. 初始化应用,启动机器人
if __name__ == "__main__":
    app = Application(
        openai_api_base='',
        openai_api_key='',
        app_id='',
        app_secret='',
        encrypt_key='',
        verification_token='',
    )
    client = Client(app.bot)
    client.start(True)  # debug mode

运行示例

pip install ca-lark-websocket langchain openai click
python test_openai.py

image

Releases

No releases published

Packages

No packages published

Languages