Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

rendering #86

Open
wants to merge 3 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion examples/mnist/sketch.js
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@ let user_guess_ele;
let percent_ele;

function setup() {
createCanvas(400, 200).parent('container');
createCanvas(800, 2400).parent('container');
nn = new NeuralNetwork(784, 64, 10);
user_digit = createGraphics(200, 200);
user_digit.pixelDensity(1);
Expand Down Expand Up @@ -131,6 +131,8 @@ function guessUserDigit() {
function draw() {
background(0);


nn.render(20,420,5,100,200);
let user = guessUserDigit();
//image(user, 0, 0);

Expand Down
12 changes: 7 additions & 5 deletions examples/xor/sketch.js
Original file line number Diff line number Diff line change
Expand Up @@ -18,9 +18,11 @@ let training_data = [{
outputs: [0]
}
];

var xorW = 400;
var xorH = 400;
function setup() {
createCanvas(400, 400);
createCanvas(400, 800);

nn = new NeuralNetwork(2, 4, 1);
lr_slider = createSlider(0.01, 0.5, 0.1, 0.01);

Expand All @@ -37,8 +39,8 @@ function draw() {
nn.setLearningRate(lr_slider.value());

let resolution = 10;
let cols = width / resolution;
let rows = height / resolution;
let cols = xorW / resolution;
let rows = xorH / resolution;
for (let i = 0; i < cols; i++) {
for (let j = 0; j < rows; j++) {
let x1 = i / cols;
Expand All @@ -51,6 +53,6 @@ function draw() {
}
}


nn.render(20,400,50,20,20);

}
72 changes: 71 additions & 1 deletion lib/nn.js
Original file line number Diff line number Diff line change
Expand Up @@ -140,5 +140,75 @@ class NeuralNetwork {
nn.learning_rate = data.learning_rate;
return nn;
}

render(offsetX,offsetY,nodeR,nodeSp,layerSp)
{

var firstNodeX = offsetX+nodeR;
var firstNodeY = offsetY+nodeR;
noStroke();
for(var i=0;i<this.input_nodes;i++)
{
fill(255,0,255);
//console.log(i);
ellipse(firstNodeX,firstNodeY+i*(nodeSp+nodeR),nodeR,nodeR);

}
for(var i=0;i<this.hidden_nodes;i++)
{
fill(255,0,255);
//console.log(i);
ellipse(firstNodeX+(layerSp+nodeR),firstNodeY+i*(nodeSp+nodeR),nodeR,nodeR);

}
for(var i=0;i<this.output_nodes;i++)
{
fill(255,0,255);
//console.log(i);
ellipse(firstNodeX+2*(layerSp+nodeR),firstNodeY+i*(nodeSp+nodeR),nodeR,nodeR);

}

for(var i=0;i<this.input_nodes;i++)
{
for(var j=0;j<this.hidden_nodes;j++)
{
var value = this.weights_ih.data[j][i];
var startX = firstNodeX;
var startY = firstNodeY+i*(nodeSp+nodeR);

var endX = firstNodeX+(layerSp+nodeR);
var endY = firstNodeY+j*(nodeSp+nodeR);
if(value<0)
stroke(255,0,0);
else
stroke(0,255,0);
strokeWeight(abs(value));

line(startX,startY,endX,endY);
}


}
for(var i=0;i<this.hidden_nodes;i++)
{
for(var j=0;j<this.output_nodes;j++)
{
var value = this.weights_ho.data[j][i];
var startX = firstNodeX+(nodeSp+nodeR);
var startY = firstNodeY+i*(nodeSp+nodeR);

var endX = firstNodeX+2*(layerSp+nodeR);
var endY = firstNodeY+j*(nodeSp+nodeR);
if(value<0)
stroke(255,0,0);
else
stroke(0,255,0);
strokeWeight(abs(value));

line(startX,startY,endX,endY);
}


}
}
}