A toolbox for deconvolution of overlapping EEG signals and (non)-linear modeling
- Linear deconvolution
- Model specification using R-style formulas (EEG~1+face+age)
- Programmed in a modular fashion
- Spline regression
- Regularization (using glmnet)
- Temporal basis functions (Fourier & Splines)
- Estimate temporal response functions (TRFs) for time-continuous predictors
- Cross-validation
git clone https://github.com/unfoldtoolbox/unfold
git submodule update --init --recursive --remote
run('init_unfold.m')
Check out the toolbox tutorials for more information!
EEG = tutorial_simulate_data('2x2')
EEG = uf_designmat('eventtypes',{'fixation'},'formula','y ~ 1+ cat(stimulusType)*cat(color)')
EEG = uf_timeexpandDesignmat('timelimits',[-0.5 1])
EEG = uf_glmfit(EEG)
% (strictly speaking optional, but recommended)
ufresult = uf_condense(EEG)
ax = uf_plotParam(ufresult,'channel',1);
Please cite as:
Ehinger BV, Dimigen O: "Unfold: An integrated toolbox for overlap correction, non-linear modeling, and regression-based EEG analysis", peerJ 2019, https://doi.org/10.7717/peerj.7838