Skip to content

Commit

Permalink
style(pre-commit.ci): auto fixes [...]
Browse files Browse the repository at this point in the history
  • Loading branch information
pre-commit-ci[bot] committed Oct 29, 2024
1 parent e4a0cfc commit 5738634
Show file tree
Hide file tree
Showing 2 changed files with 3 additions and 3 deletions.
2 changes: 1 addition & 1 deletion src/careamics/lvae_training/dataset/multich_dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -394,7 +394,7 @@ def set_img_sz(self, image_size, grid_size: Union[int, Tuple[int, int, int]]):
grid_size: frame is divided into square grids of this size. A patch centered on a grid having size `image_size` is returned.
"""
# hacky way to deal with image shape from new conf
self._img_sz = image_size[-1] # TODO revisit!
self._img_sz = image_size[-1] # TODO revisit!
self._grid_sz = grid_size
shape = self._data.shape

Expand Down
4 changes: 2 additions & 2 deletions src/careamics/models/lvae/noise_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -98,7 +98,7 @@ def __init__(self, nmodels: list[GaussianMixtureNoiseModel]):
List of noise models, one for each output channel.
"""
super().__init__()
for i, nmodel in enumerate(nmodels): # TODO refactor this !!!
for i, nmodel in enumerate(nmodels): # TODO refactor this !!!
if nmodel is not None:
self.add_module(
f"nmodel_{i}", nmodel
Expand Down Expand Up @@ -248,7 +248,7 @@ def __init__(self, config: GaussianMixtureNMConfig):
torch.Tensor(params["trained_weight"]), requires_grad=False
)
self.min_sigma = params["min_sigma"].item()
self.n_gaussian = self.weight.shape[0] // 3 # TODO why // 3 ?
self.n_gaussian = self.weight.shape[0] // 3 # TODO why // 3 ?
self.n_coeff = self.weight.shape[1]
self.tol = torch.Tensor([1e-10]) # .to(self.device)
self.min_signal = torch.Tensor([self.min_signal]) # .to(self.device)
Expand Down

0 comments on commit 5738634

Please sign in to comment.