Official implementation for "Sum-of-Parts: Faithful Attributions for Groups of Features".
Authors: Weiqiu You, Helen Qu, Marco Gatti, Bhuvnesh Jain, Eric Wong
- Release updated code - Oct 2nd 2024
- Update arxiv - Oct 5th 2024
To set up the environment:
conda create -n sop python=3.10
conda activate sop
pip install -r requirements.txt
Alternatively, you can use the docker image fallcat/xai:latest
No matter which of the above options you chose, you need to install exlib
Here we show how to use pretrained SOP and train your own SOP models for ImageNet and CosmoGrid
Here we show how we evaluate. The actual scripts we run are in src/sop/run
.
- ImageNet Accuracy
- ImageNet Purity
- ImageNet Insertion Deletion
- ImageNet Sparsity
- ImageNet Fidelity
- Cosmogrid Accuracy and Purity
@misc{you2024sumofpartsfaithfulattributionsgroups,
title={Sum-of-Parts: Faithful Attributions for Groups of Features},
author={Weiqiu You and Helen Qu and Marco Gatti and Bhuvnesh Jain and Eric Wong},
year={2024},
eprint={2310.16316},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2310.16316},
}