Dockerizing Alvis and its components
A docker image for the alvisnlp engine in command line is present into Docker Hub
/!\ Prerequisites are docker installed (>= 1.13.1) and 4Go of free disk space
Here are some examples of command you may use to run the docker image, some use an alvis plan. An example is also provided to deal with external parameters to the alvis plan.
- display the alvis help
docker run mandiayba/alvisengine:1.0.0
alvisnlp -help
- list the modules supported by alvis
docker run mandiayba/alvisengine
alvisnlp -supportedModules
- display the doc of the module named
SimpleProjector
docker run mandiayba/alvisengine
alvisnlp -moduleDoc GeniaTagger
- run an alvis workflow that trains a ML model for binary relation extraction from a text corpus
docker run -i --rm -v $PWD/workdir:/opt/alvisnlp/data -a stderr mandiayba/alvisengine:1.0.0
alvisnlp /opt/alvisnlp/data/plans/train.plan
- run an alvis workflow that classifies binary relations from a text corpus
docker run -i --rm -v $PWD/workdir:/opt/alvisnlp/data -a stderr mandiayba/alvisengine:1.0.0
alvisnlp /opt/alvisnlp/data/plans/predict.plan
- run the train workflow with the main parameters passed to the workflow
docker run -i --rm -v $PWD/workdir:/opt/alvisnlp/data -a stderr mandiayba/alvisengine:1.0.0
alvisnlp
-param train textDir /opt/alvisnlp/data/corpus/train
-param dev textDir /opt/alvisnlp/data/corpus/dev
-param test textDir /opt/alvisnlp/data/corpus/test
-param TEESTrain model /opt/alvisnlp/data/models
/opt/alvisnlp/data/plans/train.plan
The train and classify workflows (called plans into alvis) are based on GeniaTagger and TEES tools integrated to AlvisNLP. The corpus used is Bacteria Biotope 2016. The binary relation here is named "Lives_in" ant it expresses the fact that some bacteries live in some habitats.
-
automatically clone and install alvisnlp with Dockerfile
-
then, install the following external programs in an interactive way
- BioLG 1.1.12
- CCGParser 1.00
- CCGPosTagger 1.00
- EnjuParser 2.4.2
- EnjuParser2 2.4.2
- GeniaTagger 3.0.1*
- StanfordNER 2014-06-16*
- Species 1.0
- TEESClassify 2.2.1
- TEESTrain 2.2.1
- TreeTagger 3.2*
- WapitiLabel 1.5.0
- WapitiTrain 1.5.0
- YateaExtractor 0.5*
* Not the latest version, we might want to test with the latest version.