- paper: Knowledge Graph Convolutional Networks for Recommender Systems
- Code from author: KGCN
-
Clone the Openhgnn-DGL
python main.py -m KGCN -d LastFM4KGCN -t recommendation -g 0 --use_best_config
If you do not have gpu, set -gpu -1.
the dataset Last.FM is supported.
- Device: GPU, GeForce RTX 3090
- Dataset: Last.FM
Recommendation | AUC | F1 |
---|---|---|
KGCN-sum | paper: 79.4% OpenHGNN: 79.6% | paper: 71.9% OpenHGNN: 71.8% |
KGCN-concat | paper: 79.6% OpenHGNN: 78.9% | paper: 72.1% OpenHGNN: 71.4% |
KGCN-neighbor | paper: 78.1% OpenHGNN: 78.6% | paper: 69.9% OpenHGNN: 71.0% |
- We process the KGCN dataset given by KGCN. It saved as dgl.heterograph and can be loaded by dgl.load_graphs
-
Last.FM
Last.FM User 1872 item 3846 interactions 42346 entities 9366 relations 60 KG triples 15518
- KGCN
- KGCN is to aggregate the entity representation and its neighborhood representation
Yanhu Mo[GAMMA LAB]
Submit an issue or email to [email protected].