Skip to content

Latest commit

 

History

History
68 lines (39 loc) · 1.71 KB

README.md

File metadata and controls

68 lines (39 loc) · 1.71 KB

KGCN[WWW2020]

How to run

  • Clone the Openhgnn-DGL

    python main.py -m KGCN -d LastFM4KGCN -t recommendation -g 0 --use_best_config

    If you do not have gpu, set -gpu -1.

    the dataset Last.FM is supported.

Performance: Recommendation

  • Device: GPU, GeForce RTX 3090
  • Dataset: Last.FM
Recommendation AUC F1
KGCN-sum paper: 79.4% OpenHGNN: 79.6% paper: 71.9% OpenHGNN: 71.8%
KGCN-concat paper: 79.6% OpenHGNN: 78.9% paper: 72.1% OpenHGNN: 71.4%
KGCN-neighbor paper: 78.1% OpenHGNN: 78.6% paper: 69.9% OpenHGNN: 71.0%

Dataset

  • We process the KGCN dataset given by KGCN. It saved as dgl.heterograph and can be loaded by dgl.load_graphs

Description

  • Last.FM

    Last.FM
    User 1872
    item 3846
    interactions 42346
    entities 9366
    relations 60
    KG triples 15518

TrainerFlow: Recommendation

model

  • ​ KGCN
    • ​ KGCN is to aggregate the entity representation and its neighborhood representation

More

Contributor

Yanhu Mo[GAMMA LAB]

If you have any questions,

Submit an issue or email to [email protected].