Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update autorest version to prerelease 3.0.0-alpha.20240505.1 #43851

Closed
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion eng/Packages.Data.props
Original file line number Diff line number Diff line change
Expand Up @@ -223,7 +223,7 @@
All should have PrivateAssets="All" set so they don't become package dependencies
-->
<ItemGroup>
<PackageReference Update="Microsoft.Azure.AutoRest.CSharp" Version="3.0.0-beta.20240428.10" PrivateAssets="All" />
<PackageReference Update="Microsoft.Azure.AutoRest.CSharp" Version="3.0.0-alpha.20240505.1" PrivateAssets="All" />
<PackageReference Update="Azure.ClientSdk.Analyzers" Version="0.1.1-dev.20240429.1" PrivateAssets="All" />
<PackageReference Update="coverlet.collector" Version="3.2.0" PrivateAssets="All" />
<PackageReference Update="Microsoft.CodeAnalysis.NetAnalyzers" Version="7.0.4" PrivateAssets="All" />
Expand Down
39 changes: 20 additions & 19 deletions eng/emitter-package-lock.json

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

15 changes: 9 additions & 6 deletions eng/emitter-package.json
Original file line number Diff line number Diff line change
@@ -1,15 +1,18 @@
{
"main": "dist/src/index.js",
"dependencies": {
"@azure-tools/typespec-csharp": "0.2.0-beta.20240428.10"
"@azure-tools/typespec-csharp": "https://pkgs.dev.azure.com/azure-sdk/public/_packaging/azure-sdk-for-js-test-autorest/npm/registry/@azure-tools/typespec-csharp/-/typespec-csharp-0.2.0-alpha.20240505.1.tgz"
},
"devDependencies": {
"@typespec/openapi": "0.55.0",
"@typespec/versioning": "0.55.0",
"@azure-tools/typespec-azure-core": "0.41.0",
"@typespec/openapi": "0.55.0",
"@typespec/rest": "0.55.0",
"@typespec/compiler": "0.55.0",
"@azure-tools/typespec-client-generator-core": "0.41.5",
"@typespec/versioning": "0.55.0",
"@typespec/http": "0.55.0",
"@typespec/rest": "0.55.0"
"@azure-tools/typespec-client-generator-core": "0.41.8",
"@typespec/http": "0.55.0"
},
"overrides": {
"@autorest/csharp": "https://pkgs.dev.azure.com/azure-sdk/public/_packaging/azure-sdk-for-js-test-autorest/npm/registry/@autorest/csharp/-/csharp-3.0.0-alpha.20240505.1.tgz"
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -149,7 +149,7 @@ Uri endpoint = new Uri("<https://my-service.azure.com>");
AzureKeyCredential credential = new AzureKeyCredential("<key>");
Multivariate client = new AnomalyDetectorClient(endpoint, credential).GetMultivariateClient(apiVersion: "v1.1");

ModelInfo modelInfo = new ModelInfo(new Uri("http://localhost:3000"), DateTimeOffset.Parse("2022-05-10T14:57:31.2311892-04:00"), DateTimeOffset.Parse("2022-05-10T14:57:31.2311892-04:00"));
ModelInfo modelInfo = new ModelInfo(new Uri("http://localhost:3000"), DateTimeOffset.Parse("2022-05-10T18:57:31.2311892Z"), DateTimeOffset.Parse("2022-05-10T18:57:31.2311892Z"));
Response<AnomalyDetectionModel> response = await client.TrainMultivariateModelAsync(modelInfo);
]]></code>
This sample shows how to call TrainMultivariateModelAsync with all parameters.
Expand All @@ -158,7 +158,7 @@ Uri endpoint = new Uri("<https://my-service.azure.com>");
AzureKeyCredential credential = new AzureKeyCredential("<key>");
Multivariate client = new AnomalyDetectorClient(endpoint, credential).GetMultivariateClient(apiVersion: "v1.1");

ModelInfo modelInfo = new ModelInfo(new Uri("http://localhost:3000"), DateTimeOffset.Parse("2022-05-10T14:57:31.2311892-04:00"), DateTimeOffset.Parse("2022-05-10T14:57:31.2311892-04:00"))
ModelInfo modelInfo = new ModelInfo(new Uri("http://localhost:3000"), DateTimeOffset.Parse("2022-05-10T18:57:31.2311892Z"), DateTimeOffset.Parse("2022-05-10T18:57:31.2311892Z"))
{
DataSchema = DataSchema.OneTable,
DisplayName = "<displayName>",
Expand All @@ -181,7 +181,7 @@ Uri endpoint = new Uri("<https://my-service.azure.com>");
AzureKeyCredential credential = new AzureKeyCredential("<key>");
Multivariate client = new AnomalyDetectorClient(endpoint, credential).GetMultivariateClient(apiVersion: "v1.1");

ModelInfo modelInfo = new ModelInfo(new Uri("http://localhost:3000"), DateTimeOffset.Parse("2022-05-10T14:57:31.2311892-04:00"), DateTimeOffset.Parse("2022-05-10T14:57:31.2311892-04:00"));
ModelInfo modelInfo = new ModelInfo(new Uri("http://localhost:3000"), DateTimeOffset.Parse("2022-05-10T18:57:31.2311892Z"), DateTimeOffset.Parse("2022-05-10T18:57:31.2311892Z"));
Response<AnomalyDetectionModel> response = client.TrainMultivariateModel(modelInfo);
]]></code>
This sample shows how to call TrainMultivariateModel with all parameters.
Expand All @@ -190,7 +190,7 @@ Uri endpoint = new Uri("<https://my-service.azure.com>");
AzureKeyCredential credential = new AzureKeyCredential("<key>");
Multivariate client = new AnomalyDetectorClient(endpoint, credential).GetMultivariateClient(apiVersion: "v1.1");

ModelInfo modelInfo = new ModelInfo(new Uri("http://localhost:3000"), DateTimeOffset.Parse("2022-05-10T14:57:31.2311892-04:00"), DateTimeOffset.Parse("2022-05-10T14:57:31.2311892-04:00"))
ModelInfo modelInfo = new ModelInfo(new Uri("http://localhost:3000"), DateTimeOffset.Parse("2022-05-10T18:57:31.2311892Z"), DateTimeOffset.Parse("2022-05-10T18:57:31.2311892Z"))
{
DataSchema = DataSchema.OneTable,
DisplayName = "<displayName>",
Expand All @@ -216,8 +216,8 @@ Multivariate client = new AnomalyDetectorClient(endpoint, credential).GetMultiva
using RequestContent content = RequestContent.Create(new
{
dataSource = "http://localhost:3000",
startTime = "2022-05-10T14:57:31.2311892-04:00",
endTime = "2022-05-10T14:57:31.2311892-04:00",
startTime = "2022-05-10T18:57:31.2311892Z",
endTime = "2022-05-10T18:57:31.2311892Z",
});
Response response = await client.TrainMultivariateModelAsync(content);

Expand All @@ -236,8 +236,8 @@ using RequestContent content = RequestContent.Create(new
{
dataSource = "http://localhost:3000",
dataSchema = "OneTable",
startTime = "2022-05-10T14:57:31.2311892-04:00",
endTime = "2022-05-10T14:57:31.2311892-04:00",
startTime = "2022-05-10T18:57:31.2311892Z",
endTime = "2022-05-10T18:57:31.2311892Z",
displayName = "<displayName>",
slidingWindow = 1234,
alignPolicy = new
Expand Down Expand Up @@ -287,8 +287,8 @@ Multivariate client = new AnomalyDetectorClient(endpoint, credential).GetMultiva
using RequestContent content = RequestContent.Create(new
{
dataSource = "http://localhost:3000",
startTime = "2022-05-10T14:57:31.2311892-04:00",
endTime = "2022-05-10T14:57:31.2311892-04:00",
startTime = "2022-05-10T18:57:31.2311892Z",
endTime = "2022-05-10T18:57:31.2311892Z",
});
Response response = client.TrainMultivariateModel(content);

Expand All @@ -307,8 +307,8 @@ using RequestContent content = RequestContent.Create(new
{
dataSource = "http://localhost:3000",
dataSchema = "OneTable",
startTime = "2022-05-10T14:57:31.2311892-04:00",
endTime = "2022-05-10T14:57:31.2311892-04:00",
startTime = "2022-05-10T18:57:31.2311892Z",
endTime = "2022-05-10T18:57:31.2311892Z",
displayName = "<displayName>",
slidingWindow = 1234,
alignPolicy = new
Expand Down Expand Up @@ -539,7 +539,7 @@ Uri endpoint = new Uri("<https://my-service.azure.com>");
AzureKeyCredential credential = new AzureKeyCredential("<key>");
Multivariate client = new AnomalyDetectorClient(endpoint, credential).GetMultivariateClient(apiVersion: "v1.1");

MultivariateBatchDetectionOptions options = new MultivariateBatchDetectionOptions(new Uri("http://localhost:3000"), DateTimeOffset.Parse("2022-05-10T14:57:31.2311892-04:00"), DateTimeOffset.Parse("2022-05-10T14:57:31.2311892-04:00"));
MultivariateBatchDetectionOptions options = new MultivariateBatchDetectionOptions(new Uri("http://localhost:3000"), DateTimeOffset.Parse("2022-05-10T18:57:31.2311892Z"), DateTimeOffset.Parse("2022-05-10T18:57:31.2311892Z"));
Response<MultivariateDetectionResult> response = await client.DetectMultivariateBatchAnomalyAsync("<modelId>", options);
]]></code>
This sample shows how to call DetectMultivariateBatchAnomalyAsync with all parameters.
Expand All @@ -548,7 +548,7 @@ Uri endpoint = new Uri("<https://my-service.azure.com>");
AzureKeyCredential credential = new AzureKeyCredential("<key>");
Multivariate client = new AnomalyDetectorClient(endpoint, credential).GetMultivariateClient(apiVersion: "v1.1");

MultivariateBatchDetectionOptions options = new MultivariateBatchDetectionOptions(new Uri("http://localhost:3000"), DateTimeOffset.Parse("2022-05-10T14:57:31.2311892-04:00"), DateTimeOffset.Parse("2022-05-10T14:57:31.2311892-04:00"))
MultivariateBatchDetectionOptions options = new MultivariateBatchDetectionOptions(new Uri("http://localhost:3000"), DateTimeOffset.Parse("2022-05-10T18:57:31.2311892Z"), DateTimeOffset.Parse("2022-05-10T18:57:31.2311892Z"))
{
TopContributorCount = 1234,
};
Expand All @@ -563,7 +563,7 @@ Uri endpoint = new Uri("<https://my-service.azure.com>");
AzureKeyCredential credential = new AzureKeyCredential("<key>");
Multivariate client = new AnomalyDetectorClient(endpoint, credential).GetMultivariateClient(apiVersion: "v1.1");

MultivariateBatchDetectionOptions options = new MultivariateBatchDetectionOptions(new Uri("http://localhost:3000"), DateTimeOffset.Parse("2022-05-10T14:57:31.2311892-04:00"), DateTimeOffset.Parse("2022-05-10T14:57:31.2311892-04:00"));
MultivariateBatchDetectionOptions options = new MultivariateBatchDetectionOptions(new Uri("http://localhost:3000"), DateTimeOffset.Parse("2022-05-10T18:57:31.2311892Z"), DateTimeOffset.Parse("2022-05-10T18:57:31.2311892Z"));
Response<MultivariateDetectionResult> response = client.DetectMultivariateBatchAnomaly("<modelId>", options);
]]></code>
This sample shows how to call DetectMultivariateBatchAnomaly with all parameters.
Expand All @@ -572,7 +572,7 @@ Uri endpoint = new Uri("<https://my-service.azure.com>");
AzureKeyCredential credential = new AzureKeyCredential("<key>");
Multivariate client = new AnomalyDetectorClient(endpoint, credential).GetMultivariateClient(apiVersion: "v1.1");

MultivariateBatchDetectionOptions options = new MultivariateBatchDetectionOptions(new Uri("http://localhost:3000"), DateTimeOffset.Parse("2022-05-10T14:57:31.2311892-04:00"), DateTimeOffset.Parse("2022-05-10T14:57:31.2311892-04:00"))
MultivariateBatchDetectionOptions options = new MultivariateBatchDetectionOptions(new Uri("http://localhost:3000"), DateTimeOffset.Parse("2022-05-10T18:57:31.2311892Z"), DateTimeOffset.Parse("2022-05-10T18:57:31.2311892Z"))
{
TopContributorCount = 1234,
};
Expand All @@ -590,8 +590,8 @@ Multivariate client = new AnomalyDetectorClient(endpoint, credential).GetMultiva
using RequestContent content = RequestContent.Create(new
{
dataSource = "http://localhost:3000",
startTime = "2022-05-10T14:57:31.2311892-04:00",
endTime = "2022-05-10T14:57:31.2311892-04:00",
startTime = "2022-05-10T18:57:31.2311892Z",
endTime = "2022-05-10T18:57:31.2311892Z",
});
Response response = await client.DetectMultivariateBatchAnomalyAsync("<modelId>", content);

Expand All @@ -613,8 +613,8 @@ using RequestContent content = RequestContent.Create(new
{
dataSource = "http://localhost:3000",
topContributorCount = 1234,
startTime = "2022-05-10T14:57:31.2311892-04:00",
endTime = "2022-05-10T14:57:31.2311892-04:00",
startTime = "2022-05-10T18:57:31.2311892Z",
endTime = "2022-05-10T18:57:31.2311892Z",
});
Response response = await client.DetectMultivariateBatchAnomalyAsync("<modelId>", content);

Expand Down Expand Up @@ -654,8 +654,8 @@ Multivariate client = new AnomalyDetectorClient(endpoint, credential).GetMultiva
using RequestContent content = RequestContent.Create(new
{
dataSource = "http://localhost:3000",
startTime = "2022-05-10T14:57:31.2311892-04:00",
endTime = "2022-05-10T14:57:31.2311892-04:00",
startTime = "2022-05-10T18:57:31.2311892Z",
endTime = "2022-05-10T18:57:31.2311892Z",
});
Response response = client.DetectMultivariateBatchAnomaly("<modelId>", content);

Expand All @@ -677,8 +677,8 @@ using RequestContent content = RequestContent.Create(new
{
dataSource = "http://localhost:3000",
topContributorCount = 1234,
startTime = "2022-05-10T14:57:31.2311892-04:00",
endTime = "2022-05-10T14:57:31.2311892-04:00",
startTime = "2022-05-10T18:57:31.2311892Z",
endTime = "2022-05-10T18:57:31.2311892Z",
});
Response response = client.DetectMultivariateBatchAnomaly("<modelId>", content);

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,7 @@ using RequestContent content = RequestContent.Create(new
{
new
{
timestamp = "2022-05-10T14:57:31.2311892-04:00",
timestamp = "2022-05-10T18:57:31.2311892Z",
value = 123.45F,
}
},
Expand Down Expand Up @@ -108,7 +108,7 @@ using RequestContent content = RequestContent.Create(new
{
new
{
timestamp = "2022-05-10T14:57:31.2311892-04:00",
timestamp = "2022-05-10T18:57:31.2311892Z",
value = 123.45F,
}
},
Expand Down Expand Up @@ -157,7 +157,7 @@ UnivariateDetectionOptions options = new UnivariateDetectionOptions(new TimeSeri
{
new TimeSeriesPoint(123.45F)
{
Timestamp = DateTimeOffset.Parse("2022-05-10T14:57:31.2311892-04:00"),
Timestamp = DateTimeOffset.Parse("2022-05-10T18:57:31.2311892Z"),
}
})
{
Expand Down Expand Up @@ -196,7 +196,7 @@ UnivariateDetectionOptions options = new UnivariateDetectionOptions(new TimeSeri
{
new TimeSeriesPoint(123.45F)
{
Timestamp = DateTimeOffset.Parse("2022-05-10T14:57:31.2311892-04:00"),
Timestamp = DateTimeOffset.Parse("2022-05-10T18:57:31.2311892Z"),
}
})
{
Expand Down Expand Up @@ -253,7 +253,7 @@ using RequestContent content = RequestContent.Create(new
{
new
{
timestamp = "2022-05-10T14:57:31.2311892-04:00",
timestamp = "2022-05-10T18:57:31.2311892Z",
value = 123.45F,
}
},
Expand Down Expand Up @@ -321,7 +321,7 @@ using RequestContent content = RequestContent.Create(new
{
new
{
timestamp = "2022-05-10T14:57:31.2311892-04:00",
timestamp = "2022-05-10T18:57:31.2311892Z",
value = 123.45F,
}
},
Expand Down Expand Up @@ -371,7 +371,7 @@ UnivariateChangePointDetectionOptions options = new UnivariateChangePointDetecti
{
new TimeSeriesPoint(123.45F)
{
Timestamp = DateTimeOffset.Parse("2022-05-10T14:57:31.2311892-04:00"),
Timestamp = DateTimeOffset.Parse("2022-05-10T18:57:31.2311892Z"),
}
}, TimeGranularity.Yearly)
{
Expand Down Expand Up @@ -407,7 +407,7 @@ UnivariateChangePointDetectionOptions options = new UnivariateChangePointDetecti
{
new TimeSeriesPoint(123.45F)
{
Timestamp = DateTimeOffset.Parse("2022-05-10T14:57:31.2311892-04:00"),
Timestamp = DateTimeOffset.Parse("2022-05-10T18:57:31.2311892Z"),
}
}, TimeGranularity.Yearly)
{
Expand Down Expand Up @@ -455,7 +455,7 @@ using RequestContent content = RequestContent.Create(new
{
new
{
timestamp = "2022-05-10T14:57:31.2311892-04:00",
timestamp = "2022-05-10T18:57:31.2311892Z",
value = 123.45F,
}
},
Expand Down Expand Up @@ -509,7 +509,7 @@ using RequestContent content = RequestContent.Create(new
{
new
{
timestamp = "2022-05-10T14:57:31.2311892-04:00",
timestamp = "2022-05-10T18:57:31.2311892Z",
value = 123.45F,
}
},
Expand Down
Loading
Loading