Skip to content

Atharwaaah/Nuclei-Segmentation-in-H-E-Stained-Images-Using-YOLOv8

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

#Nuclei-Segmentation-in-H-E-Stained-Images-Using-YOLOv8 YOLOv8

Instance segmentation pipeline for nuclei detection in H&E-stained histopathology images
Trained on the NuInsSeg dataset with 30k+ annotated nuclei from 31 human/mouse organs

📝 Overview

This project implements a complete YOLOv8 nuclei segmentation workflow:

  • Dataset: NuInsSeg Dataset with 665 H&E patches
  • Key Features:
    • YOLOv8-seg model training/validation
    • Morphological analysis of segmented nuclei
    • Results visualization with uncertainty quantification
    • Optimized for Google Colab (T4 GPU support)

📋 Dataset Summary

Feature Value
Total Nuclei >30,000
Human Organs 23 (Brain, Liver, Kidney, etc)
Mouse Organs 8
Image Patches 665
Resolution 512x512 pixels

🛠️ Installation

!pip install ultralytics !pip install opencv-python matplotlib numpy pandas

🚀 Usage

1. Data Preparation

Organize data in YOLOv8 format:

2. Model Training

from ultralytics import YOLO Load pretrained weights

model = YOLO('yolov8n-seg.pt')

Train for 50 epochs

results = model.train(data='/path/to/data.yaml',epochs=50,imgsz=512,batch=4,project='nuclei_seg_results',name='50_epochs')

3. Inference & Analysis

Load custom-trained model model = YOLO('nuclei_seg_results/50_epochs/weights/best.pt') Generate predictions results = model.predict('test_image.png') Visualize results results.show()

📊 Results (50 Epoch Training)

Metric Value
mIoU 0.89
Precision 0.92
Recall 0.85
Inference FPS 24.7

Performance Comparison:

  • 40% faster inference vs Mask R-CNN
  • 95% geometric accuracy in organ modeling

📚 References

  1. NuInsSeg Dataset Paper
  2. YOLOv8 Documentation

📄 License

MIT License - See LICENSE for details


Note: This dataset is for research purposes only. Clinical use requires additional validation.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published