Skip to content

Ankush96/grad-cam.tensorflow

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

grad-cam.tensorflow

Implementation of Grad CAM in tensorflow

Gradient class activation maps are a visualization technique for deep learning networks.

The original paper: https://arxiv.org/pdf/1610.02391v1.pdf

The original torch implementation: https://github.com/ramprs/grad-cam

Setup

Clone the repository

git clone https://github.com/Ankush96/grad-cam.tensorflow/

Download the VGG16 weights from https://www.cs.toronto.edu/~frossard/vgg16/vgg16_weights.npz

Usage

python main.py --input laska.png --output laska_save.png --layer_name pool5

Results

Input Output
Original image Original image + Visualization

Acknowledgement

Model weights (vgg16_weights.npz), Class names (imagenet_classes.py) and example input (laska.png) were copied from this blog by Davi Frossard (https://www.cs.toronto.edu/~frossard/post/vgg16/). TensorFlow model of vgg (vgg16.py) was taken from the same blog but was modified a little. https://github.com/jacobgil/keras-grad-cam also provided key insights into understanding the algorithm.

About

Implementation of Grad CAM in tensorflow

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages