Skip to content

Variants annotated with statistical analysis based gradation for potential drug resistance association in M.tb

Notifications You must be signed in to change notification settings

Ankitapal1995/DraVAR

Repository files navigation

DraVAR

DraVAR (Drug Resistance Associated VARiant detector) is a pipeline for analyzing genomic data to identify variants associated with drug resistance. The pipeline integrates tools for quality control, alignment, variant calling, annotation and gradation as per drug resistance association in Mycobacterium tuberculosis using statistical matrics.

Features

Automated variant calling and annotation.
Integrates widely used bioinformatics tools.
Flexible and customizable for different reference genomes and datasets.

Installation Install Dependencies

The pipeline requires the following software. Install them via conda:
conda create -n draVAR_env -c bioconda -c conda-forge \ fastqc trimmomatic bwa samtools bcftools freebayes snpeff vcfpy pandas conda activate draVAR_env

fastqc --version trimmomatic -version bwa samtools --version bcftools --version freebayes --version python -m vcfpy --help

Usage Input Files

The pipeline requires three input files:

Reference Genome (`ref.gb`): A GenBank file for the reference genome.
Read Files (`reads_1.fastq.gz` and `reads_2.fastq.gz`): Paired-end sequencing data.

Run the Pipeline

Run the pipeline with the following command:
sh DraVAR.sh --ref 'ref.gb' --R1 reads_1.fastq.gz --R2 reads_2.fastq.gz --prefix prefix --output out

Parameters

--ref: Path to the reference genome in .gb or .gbk format.
--R1: Path to the first paired-end read file (reads_1.fastq.gz).
--R2: Path to the second paired-end read file (reads_2.fastq.gz).
--prefix: Prefix for naming intermediate and result files.
--output: Directory to store the results.

Contribution

Feel free to fork the repository and submit pull requests to improve the pipeline.

For questions or issues, contact Ankita Pal at [email protected].

Example
DraVAR.sh --ref 'AL123456.gb' --R1 'reads_1.fastq.gz' --R2 'reads_2.fastq.gz' --prefix 'example' --output 'results'

You can also run using nextflow

nextflow run pipeline.nf --ref /path/to/reference.gb --reads1 /path/to/reads_1.fastq.gz --reads2 /path/to/reads_2.fastq.gz --prefix your_prefix --output_dir /path/to/output

About

Variants annotated with statistical analysis based gradation for potential drug resistance association in M.tb

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published