-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcnn_train_reg.m
694 lines (620 loc) · 22.7 KB
/
cnn_train_reg.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
function [net, stats] = cnn_train_reg(net, imdb, getBatch, varargin)
%CNN_TRAIN_REG is a modified copy of CNN_TRAIN
%CNN_TRAIN An example implementation of SGD for training CNNs
% CNN_TRAIN() is an example learner implementing stochastic
% gradient descent with momentum to train a CNN. It can be used
% with different datasets and tasks by providing a suitable
% getBatch function.
%
% The function automatically restarts after each training epoch by
% checkpointing.
%
% The function supports training on CPU or on one or more GPUs
% (specify the list of GPU IDs in the `gpus` option).
% Copyright (C) 2014-16 Andrea Vedaldi.
% All rights reserved.
%
% This file is part of the VLFeat library and is made available under
% the terms of the BSD license (see the COPYING file).
%
%----------------------------------------------------------------------
% Modified by : Amal RANNEN TRIKI (ART) - May 2016
% Modifications: See process_epoch and accumulate_gradients functions.
%----------------------------------------------------------------------
opts.expDir = fullfile('data','exp') ;
opts.continue = true ;
opts.batchSize = 256 ;
opts.numSubBatches = 1 ;
opts.train = [] ;
opts.val = [] ;
opts.reg = [] ;
opts.gpus = [] ;
opts.prefetch = false ;
opts.numEpochs = 300 ;
opts.learningRate = 0.001 ;
opts.weightDecay = 0.0001 ;
opts.momentum = 0;
opts.randomSeed = 0 ;
opts.memoryMapFile = fullfile(tempdir, 'matconvnet.bin') ;
opts.profile = false ;
opts.conserveMemory = true ;
opts.backPropDepth = +inf ;
opts.sync = false ;
opts.cudnn = true ;
opts.errorFunction = 'multiclass' ;
opts.errorLabels = {} ;
opts.plotDiagnostics = false ;
opts.plotStatistics = true;
opts.lambda = 0.005;
opts.regType = 'data distribution';
opts = vl_argparse(opts, varargin) ;
if ~exist(opts.expDir, 'dir'), mkdir(opts.expDir) ; end
if isempty(opts.train), opts.train = find(imdb.images.set==1) ; end
if isempty(opts.val), opts.val = find(imdb.images.set==2) ; end
if isempty(opts.reg), opts.reg = find(imdb.images.set==4) ; end
if isnan(opts.train), opts.train = [] ; end
if isnan(opts.val), opts.val = [] ; end
if isnan(opts.reg), opts.reg = [] ; end
% -------------------------------------------------------------------------
% Initialization
% -------------------------------------------------------------------------
net = vl_simplenn_tidy(net); % fill in some eventually missing values
net.layers{end-1}.precious = 1; % do not remove predictions, used for error
vl_simplenn_display(net, 'batchSize', opts.batchSize) ;
evaluateMode = isempty(opts.train) ;
if ~evaluateMode
for i=1:numel(net.layers)
if isfield(net.layers{i}, 'weights')
J = numel(net.layers{i}.weights) ;
if ~isfield(net.layers{i}, 'learningRate')
net.layers{i}.learningRate = ones(1, J, 'single') ;
end
if ~isfield(net.layers{i}, 'weightDecay')
net.layers{i}.weightDecay = ones(1, J, 'single') ;
end
end
end
end
% setup error calculation function
hasError = true ;
if isstr(opts.errorFunction)
switch opts.errorFunction
case 'none'
opts.errorFunction = @error_none ;
hasError = false ;
case 'multiclass'
opts.errorFunction = @error_multiclass ;
if isempty(opts.errorLabels), opts.errorLabels = {'top1err', 'top5err'} ; end
case 'binary'
opts.errorFunction = @error_binary ;
if isempty(opts.errorLabels), opts.errorLabels = {'binerr'} ; end
otherwise
error('Unknown error function ''%s''.', opts.errorFunction) ;
end
end
state.getBatch = getBatch ;
stats = [] ;
% -------------------------------------------------------------------------
% Train and validate
% -------------------------------------------------------------------------
modelPath = @(ep) fullfile(opts.expDir, sprintf('net-epoch-%d.mat', ep));
modelFigPath = fullfile(opts.expDir, 'net-train.pdf') ;
start = opts.continue * findLastCheckpoint(opts.expDir) ;
if start >= 1
fprintf('%s: resuming by loading epoch %d\n', mfilename, start) ;
[net, stats] = loadState(modelPath(start)) ;
end
disp(['Strating training - Regularization with function norm using ', opts.regType, ' \lambda = ', num2str(opts.lambda)]);
for epoch=start+1:opts.numEpochs
% Set the random seed based on the epoch and opts.randomSeed.
% This is important for reproducibility, including when training
% is restarted from a checkpoint.
rng(epoch + opts.randomSeed) ;
prepareGPUs(opts, epoch == start+1) ;
% Train for one epoch.
state.epoch = epoch ;
state.learningRate = opts.learningRate(min(epoch, numel(opts.learningRate))) ;
state.train = opts.train(randperm(numel(opts.train))) ; % shuffle
state.val = opts.val(randperm(numel(opts.val))) ;
state.reg = opts.reg(randperm(numel(opts.reg))) ;
state.imdb = imdb ;
if numel(opts.gpus) <= 1
[net,stats.train(epoch),prof] = process_epoch(net, state, opts, 'train') ;
[~,stats.val(epoch)] = process_epoch(net, state, opts, 'val') ;
if opts.profile
profview(0,prof) ;
keyboard ;
end
else
spmd(numGpus)
[net_, stats_.train, prof_] = process_epoch(net, state, opts, 'train') ;
[~, stats_.val] = process_epoch(net_, state, opts, 'val') ;
if labindex == 1, savedNet_ = net_ ; end
end
net = savedNet_{1} ;
stats__ = accumulateStats(stats_) ;
stats.train(epoch) = stats__.train ;
stats.val(epoch) = stats__.val ;
if opts.profile
mpiprofile('viewer', [prof_{:,1}]) ;
keyboard ;
end
clear net_ stats_ stats__ savedNet_ ;
end
% save
if ~evaluateMode
saveState(modelPath(epoch), net, stats) ;
end
if opts.plotStatistics
switchFigure(1) ; clf ;
plots = setdiff(...
cat(2,...
fieldnames(stats.train)', ...
fieldnames(stats.val)'), {'num', 'time'}) ;
for p = plots
p = char(p) ;
values = zeros(0, epoch) ;
leg = {} ;
for f = {'train', 'val'}
f = char(f) ;
if isfield(stats.(f), p)
tmp = [stats.(f).(p)] ;
values(end+1,:) = tmp(1,:)' ;
leg{end+1} = f ;
end
end
subplot(1,numel(plots),find(strcmp(p,plots))) ;
plot(1:epoch, values','o-') ;
xlabel('epoch') ;
title(p) ;
legend(leg{:}) ;
grid on ;
end
drawnow ;
print(1, modelFigPath, '-dpdf') ;
end
end
% -------------------------------------------------------------------------
function err = error_multiclass(opts, labels, res)
% -------------------------------------------------------------------------
predictions = gather(res(end-1).x) ;
[~,predictions] = sort(predictions, 3, 'descend') ;
% be resilient to badly formatted labels
if numel(labels) == size(predictions, 4)
labels = reshape(labels,1,1,1,[]) ;
end
% skip null labels
mass = single(labels(:,:,1,:) > 0) ;
if size(labels,3) == 2
% if there is a second channel in labels, used it as weights
mass = mass .* labels(:,:,2,:) ;
labels(:,:,2,:) = [] ;
end
m = min(5, size(predictions,3)) ;
error = ~bsxfun(@eq, predictions, labels) ;
err(1,1) = sum(sum(sum(mass .* error(:,:,1,:)))) ;
err(2,1) = sum(sum(sum(mass .* min(error(:,:,1:m,:),[],3)))) ;
% -------------------------------------------------------------------------
function err = error_binary(opts, labels, res)
% -------------------------------------------------------------------------
predictions = gather(res(end-1).x) ;
error = bsxfun(@times, predictions, labels) < 0 ;
err = sum(error(:)) ;
% -------------------------------------------------------------------------
function err = error_none(opts, labels, res)
% -------------------------------------------------------------------------
err = zeros(0,1) ;
% -------------------------------------------------------------------------
function [net_cpu,stats,prof] = process_epoch(net, state, opts, mode)
% -------------------------------------------------------------------------
% The main introduced modification is in this function. It uses the
% modified version of vl_simplenn (see the provided code for more details).
% It also introduces a regularization phase. This phase operates the
% function norm regularization introduced in the paper (see the README file
% for more details). We have the choice between two methods : function norm
% approximation using data distribution, or by using slice sampling. This
% choice is set using opts.regType. The regularization parameter lambda is
% set using opts.lambda. It can be a double, in which case the parameter is
% constant during the training, or an array which length is equal to the
% number of epochs.
netReg = net;
netReg.layers(end) =[];
% initialize empty momentum
if strcmp(mode,'train')
state.momentum = {} ;
for i = 1:numel(net.layers)
if isfield(net.layers{i}, 'weights')
for j = 1:numel(net.layers{i}.weights)
state.layers{i}.momentum{j} = 0 ;
end
end
end
end
% move CNN to GPU as needed
numGpus = numel(opts.gpus) ;
if numGpus >= 1
net = vl_simplenn_move(net, 'gpu') ;
netReg = vl_simplenn_move(netReg, 'gpu');
end
if numGpus > 1
mmap = map_gradients(opts.memoryMapFile, net, numGpus) ;
else
mmap = [] ;
end
% profile
if opts.profile
if numGpus <= 1
profile clear ;
profile on ;
else
mpiprofile reset ;
mpiprofile on ;
end
end
subset = state.(mode) ;
batchSizeAll = opts.batchSize;
num_batch = ceil(numel(subset)/batchSizeAll);
if strcmp(mode, 'train')
subset_reg = state.reg;
batchSizeTr = ceil(batchSizeAll*numel(subset)/(numel(subset)+numel(subset_reg)));
num_batch = ceil(numel(subset)/batchSizeTr);
batchSizeReg = ceil(batchSizeAll*numel(subset_reg)/(numel(subset)+numel(subset_reg)));
t_reg = (1:batchSizeReg:numel(subset_reg));
if length(opts.lambda)==1
lambda = opts.lambda;
else
lambda = opts.lambda(state.epoch);
end;
k = 1;
imReg = [] ;
else
batchSizeTr = batchSizeAll;
end;
num = 0 ;
stats.num = 0 ; % return something even if subset = []
stats.time = 0 ;
adjustTime = 0 ;
res = [] ;
resReg = [];
error = [] ;
start = tic ;
for t=1:batchSizeTr:numel(subset)
fprintf('%s: epoch %02d: %3d/%3d:', mode, state.epoch, ...
fix((t-1)/batchSizeTr)+1, num_batch) ;
batchSize = min(batchSizeTr, numel(subset) - t + 1) ;
if strcmp(mode, 'train')
batchSizeReg_t = min(batchSizeReg, numel(subset_reg) - t_reg(k) + 1) ;
else
disp('beginning validation phase');
end;
for s=1:opts.numSubBatches
% get this image batch and prefetch the next
batchStart = t + (labindex-1) + (s-1) * numlabs ;
batchEnd = min(t+batchSizeTr-1, numel(subset)) ;
batch = subset(batchStart : opts.numSubBatches * numlabs : batchEnd) ;
num = num + numel(batch) ;
if numel(batch) == 0, continue ; end
if strcmp(mode, 'train')
batchStartReg = t_reg(k) + (labindex-1) + (s-1) * numlabs ;
batchEndReg = min(t_reg(k)+batchSizeReg-1, numel(subset_reg)) ;
batchReg = subset_reg(batchStartReg : opts.numSubBatches * numlabs : batchEndReg) ;
if numel(batchReg) == 0, continue ; end
end;
% Training phase:
[im, labels] = state.getBatch(state.imdb, batch) ;
if opts.prefetch
if s == opts.numSubBatches
batchStart = t + (labindex-1) + batchSizeTr ;
batchEnd = min(t+2*batchSizeTr-1, numel(subset)) ;
else
batchStart = batchStart + numlabs ;
end
nextBatch = subset(batchStart : opts.numSubBatches * numlabs : batchEnd) ;
state.getBatch(state.imdb, nextBatch) ;
end
if numGpus >= 1
im = gpuArray(im) ;
end
if strcmp(mode, 'train')
dzdy = 1 ;
evalMode = 'normal' ;
else
dzdy = [] ;
evalMode = 'test' ;
end
net.layers{end}.class = labels ;
res = vl_simplenn(net, im, dzdy, res, 'train',...
'accumulate', s ~= 1, ...
'mode', evalMode, ...
'conserveMemory', opts.conserveMemory, ...
'backPropDepth', opts.backPropDepth, ...
'sync', opts.sync, ...
'cudnn', opts.cudnn) ;
% accumulate errors
error = sum([error, [...
sum(double(gather(res(end).x))) ;
reshape(opts.errorFunction(opts, labels, res),[],1) ; ]],2) ;
end
% accumulate gradient
if strcmp(mode, 'train')
if ~isempty(mmap)
write_gradients(mmap, net) ;
labBarrier() ;
end
[state, net] = accumulate_gradients(state, net, res, opts, batchSize, mmap,1) ;
% Regularization phase:
netReg.layers(1:end) = net.layers(1:end-1);
switch opts.regType
case 'data distribution'
[imReg, ~] = state.getBatch(state.imdb, batchReg) ;
if opts.prefetch
if s == opts.numSubBatches
batchStartReg = t_reg(k) + (labindex-1) + batchSizeReg ;
batchEndReg = min(t+2*batchSizeReg-1, numel(subset_reg)) ;
else
batchStartReg = batchStartReg + numlabs ;
end
nextBatchReg = subset_reg(batchStartReg : opts.numSubBatches * numlabs : batchEndReg) ;
state.getBatch(state.imdb, nextBatchReg) ;
end
case 'slice sampling'
[m,n,p] = size(im(:,:,:,1));
if numel(imReg)==0
initial = zeros(m*n*p,1);
else
initial = reshape(gather(imReg(:,:,:,end)), m*n*p, 1);
end;
imReg = get_sample(netReg,numel(batchReg),[m n p], numGpus, initial);
otherwise
error('Unknown regularization type: should be "data distribution" or "slice sampling"');
end;
if numGpus >= 1
imReg = gpuArray(single(imReg)) ;
end
resReg = vl_simplenn(netReg, imReg, dzdy, resReg, 'reg', ...
'accumulate', s ~= 1, ...
'mode', evalMode, ...
'conserveMemory', opts.conserveMemory, ...
'backPropDepth', opts.backPropDepth, ...
'sync', opts.sync, ...
'cudnn', opts.cudnn) ;
% accumulate gradient for regularization
if strcmp(mode, 'train')
if ~isempty(mmap)
write_gradients(mmap, net) ;
labBarrier() ;
end
[state, netReg] = accumulate_gradients(state, netReg, res(1:end-1), opts, batchSizeReg_t, mmap, lambda) ;
end
net.layers(1:end-1) = netReg.layers(1:end);
k = k+1;
end;
% get statistics
time = toc(start) + adjustTime ;
batchTime = time - stats.time ;
stats = extractStats(net, opts, error / num) ;
stats.num = num ;
stats.time = time ;
currentSpeed = batchSize / batchTime ;
averageSpeed = (t + batchSize - 1) / time ;
if t == batchSizeTr + 1
% compensate for the first iteration, which is an outlier
adjustTime = 2*batchTime - time ;
stats.time = time + adjustTime ;
end
fprintf(' %.1f (%.1f) Hz', averageSpeed, currentSpeed) ;
for f = setdiff(fieldnames(stats)', {'num', 'time'})
f = char(f) ;
fprintf(' %s:', f) ;
fprintf(' %.3f', stats.(f)) ;
end
fprintf('\n') ;
% collect diagnostic statistics
if strcmp(mode, 'train') && opts.plotDiagnostics
switchfigure(2) ; clf ;
diagn = [res.stats] ;
diagnvar = horzcat(diagn.variation) ;
barh(diagnvar) ;
set(gca,'TickLabelInterpreter', 'none', ...
'YTick', 1:numel(diagnvar), ...
'YTickLabel',horzcat(diagn.label), ...
'YDir', 'reverse', ...
'XScale', 'log', ...
'XLim', [1e-5 1]) ;
drawnow ;
end
end
if ~isempty(mmap)
unmap_gradients(mmap) ;
end
if opts.profile
if numGpus <= 1
prof = profile('info') ;
profile off ;
else
prof = mpiprofile('info');
mpiprofile off ;
end
else
prof = [] ;
end
net_cpu = vl_simplenn_move(net, 'cpu') ;
% -------------------------------------------------------------------------
function [state, net] = accumulate_gradients(state, net, res, opts, batchSize, mmap, lambda)
% -------------------------------------------------------------------------
%Modified function. A parameter lambda is introduced. Lambda is equa to 1
%in the training phase (see process_epoch function), and to the
%regularization parameter in the regularization phase.
numGpus = numel(opts.gpus) ;
otherGpus = setdiff(1:numGpus, labindex) ;
for l=numel(net.layers):-1:1
for j=1:numel(res(l).dzdw)
% accumualte gradients from multiple labs (GPUs) if needed
if numGpus > 1
tag = sprintf('l%d_%d',l,j) ;
for g = otherGpus
tmp = gpuArray(mmap.Data(g).(tag)) ;
res(l).dzdw{j} = res(l).dzdw{j} + tmp ;
end
end
if j == 3 && strcmp(net.layers{l}.type, 'bnorm')
% special case for learning bnorm moments
thisLR = net.layers{l}.learningRate(j) ;
net.layers{l}.weights{j} = ...
(1 - thisLR) * net.layers{l}.weights{j} + ...
(lambda*thisLR/batchSize) * res(l).dzdw{j} ;
else
% standard gradient training
thisDecay = opts.weightDecay * net.layers{l}.weightDecay(j) ;
thisLR = state.learningRate * net.layers{l}.learningRate(j) ;
state.layers{l}.momentum{j} = opts.momentum * state.layers{l}.momentum{j} ...
- thisDecay * net.layers{l}.weights{j} ...
- (lambda/ batchSize) * res(l).dzdw{j} ;
net.layers{l}.weights{j} = net.layers{l}.weights{j} + ...
thisLR * state.layers{l}.momentum{j} ;
end
% if requested, collect some useful stats for debugging
if opts.plotDiagnostics
variation = [] ;
label = '' ;
switch net.layers{l}.type
case {'conv','convt'}
variation = thisLR * mean(abs(state.layers{l}.momentum{j}(:))) ;
if j == 1 % fiters
base = mean(abs(net.layers{l}.weights{j}(:))) ;
label = 'filters' ;
else % biases
base = mean(abs(res(l+1).x(:))) ;
label = 'biases' ;
end
variation = variation / base ;
label = sprintf('%s_%s', net.layers{l}.name, label) ;
end
res(l).stats.variation(j) = variation ;
res(l).stats.label{j} = label ;
end
end
end
% -------------------------------------------------------------------------
function mmap = map_gradients(fname, net, numGpus)
% -------------------------------------------------------------------------
format = {} ;
for i=1:numel(net.layers)
for j=1:numel(net.layers(i).params)
par = net.layers(i).params{j} ;
format(end+1,1:3) = {'single', size(par), sprintf('l%d_%d',i,j)} ;
end
end
format(end+1,1:3) = {'double', [3 1], 'errors'} ;
if ~exist(fname) && (labindex == 1)
f = fopen(fname,'wb') ;
for g=1:numGpus
for i=1:size(format,1)
fwrite(f,zeros(format{i,2},format{i,1}),format{i,1}) ;
end
end
fclose(f) ;
end
labBarrier() ;
mmap = memmapfile(fname, ...
'Format', format, ...
'Repeat', numGpus, ...
'Writable', true) ;
% -------------------------------------------------------------------------
function write_gradients(mmap, net, res)
% -------------------------------------------------------------------------
for i=1:numel(net.layers)
for j=1:numel(res(i).dzdw)
mmap.Data(labindex).(sprintf('l%d_%d',i,j)) = gather(res(i).dzdw{j}) ;
end
end
% -------------------------------------------------------------------------
function unmap_gradients(mmap)
% -------------------------------------------------------------------------
% -------------------------------------------------------------------------
function stats = accumulateStats(stats_)
% -------------------------------------------------------------------------
for s = {'train', 'val'}
s = char(s) ;
total = 0 ;
% initialize stats stucture with same fields and same order as
% stats_{1}
stats__ = stats_{1} ;
names = fieldnames(stats__.(s))' ;
values = zeros(1, numel(names)) ;
fields = cat(1, names, num2cell(values)) ;
stats.(s) = struct(fields{:}) ;
for g = 1:numel(stats_)
stats__ = stats_{g} ;
num__ = stats__.(s).num ;
total = total + num__ ;
for f = setdiff(fieldnames(stats__.(s))', 'num')
f = char(f) ;
stats.(s).(f) = stats.(s).(f) + stats__.(s).(f) * num__ ;
if g == numel(stats_)
stats.(s).(f) = stats.(s).(f) / total ;
end
end
end
stats.(s).num = total ;
end
% -------------------------------------------------------------------------
function stats = extractStats(net, opts, errors)
% -------------------------------------------------------------------------
stats.objective = errors(1) ;
for i = 1:numel(opts.errorLabels)
stats.(opts.errorLabels{i}) = errors(i+1) ;
end
% -------------------------------------------------------------------------
function saveState(fileName, net, stats)
% -------------------------------------------------------------------------
save(fileName, 'net', 'stats') ;
% -------------------------------------------------------------------------
function [net, stats] = loadState(fileName)
% -------------------------------------------------------------------------
load(fileName, 'net', 'stats') ;
net = vl_simplenn_tidy(net) ;
% -------------------------------------------------------------------------
function epoch = findLastCheckpoint(modelDir)
% -------------------------------------------------------------------------
list = dir(fullfile(modelDir, 'net-epoch-*.mat')) ;
tokens = regexp({list.name}, 'net-epoch-([\d]+).mat', 'tokens') ;
epoch = cellfun(@(x) sscanf(x{1}{1}, '%d'), tokens) ;
epoch = max([epoch 0]) ;
% -------------------------------------------------------------------------
function switchFigure(n)
% -------------------------------------------------------------------------
if get(0,'CurrentFigure') ~= n
try
set(0,'CurrentFigure',n) ;
catch
figure(n) ;
end
end
% -------------------------------------------------------------------------
function prepareGPUs(opts, cold)
% -------------------------------------------------------------------------
numGpus = numel(opts.gpus) ;
if numGpus > 1
% check parallel pool integrity as it could have timed out
pool = gcp('nocreate') ;
if ~isempty(pool) && pool.NumWorkers ~= numGpus
delete(pool) ;
end
pool = gcp('nocreate') ;
if isempty(pool)
parpool('local', numGpus) ;
cold = true ;
end
if exist(opts.memoryMapFile)
delete(opts.memoryMapFile) ;
end
end
if numGpus >= 1 && cold
fprintf('%s: resetting GPU\n', mfilename)
if numGpus == 1
gpuDevice(opts.gpus)
else
spmd, gpuDevice(opts.gpus(labindex)), end
end
end