This repo is forked from chatbot-ui.
This repository is highly experimental, so please do not expect compatibility when performing updates.
- Do not input personal information.
- Conversation, prompts, folders are stored in mongodb.
- Streaming response is not working in vercel environment.
- Plugins are not working for vercel timeout limitation.
- SSO Auth(Google, GitHub)
- ChatGPT compatible plugins
- Python Interpreter Plugin
- Persitent storage(MongoDB)
- IME support
- Chatbot UI will be updated over time.
- Expect frequent improvements.
Recent updates:
- Python Interpreter (5/8/23)
- Multiple Users with MongoDB Support (4/19/23)
- Plugins(ChatGPT compatible) (4/17/23)
- SSO Auth(email pattern matching only) (4/15/23)
- Prompt templates (3/27/23)
- Regenerate & edit responses (3/25/23)
- Folders (3/24/23)
- Search chat content (3/23/23)
- Stop message generation (3/22/23)
- Import/Export chats (3/22/23)
- Custom system prompt (3/21/23)
- Error handling (3/20/23)
- GPT-4 support (access required) (3/20/23)
- Search conversations (3/19/23)
- Code syntax highlighting (3/18/23)
- Toggle sidebar (3/18/23)
- Conversation naming (3/18/23)
- GitHub flavored markdown (3/18/23)
- Add OpenAI API key in app (3/18/23)
- Markdown support (3/17/23)
Docker
Setup enviroment variables:
cp .env.local.example .env.local
# specify OPENAI_API_KEY, MONGODB_URI, MONGO_INITDB_ROOT_USERNAME, MONGO_INITDB_ROOT_PASSWORD
vim .env.local
Run with docker-compose:
docker compose up -d
1. Clone Repo
git clone https://github.com/dotneet/smart-chatbot-ui.git
2. Install Dependencies
npm i
3. Provide OpenAI API Key
Create a .env.local file in the root of the repo with your OpenAI API Key:
cp .env.local.example .env.local
# Specify OPENAI_API_KEY
vim .env.local
You can set
OPENAI_API_HOST
where access to the official OpenAI host is restricted or unavailable, allowing users to configure an alternative host for their specific needs.
Additionally, if you have multiple OpenAI Organizations, you can set
OPENAI_ORGANIZATION
to specify one.
4. Run MongoDB
docker compose -f docker-compose.dev.yml up -d
5. Run App
npm run dev
6. Use it
You should be able to start chatting.
When deploying the application, the following environment variables can be set:
Environment Variable | Default value | Description |
---|---|---|
OPENAI_API_KEY | The default API key used for authentication with OpenAI | |
OPENAI_API_HOST | https://api.openai.com |
The base url, for Azure use https://<endpoint>.openai.azure.com |
OPENAI_API_TYPE | openai |
The API type, options are openai or azure |
OPENAI_API_VERSION | 2023-03-15-preview |
Only applicable for Azure OpenAI |
AZURE_DEPLOYMENT_ID_EMBEDDINGS | Specify model deployment ID used for embeddings. Needed when Azure OpenAI, Ref Azure OpenAI API | |
OPENAI_ORGANIZATION | Your OpenAI organization ID | |
DEFAULT_MODEL | gpt-3.5-turbo |
The default model to use on new conversations, for Azure use gpt-35-turbo |
NEXT_PUBLIC_DEFAULT_SYSTEM_PROMPT | see here | The default system prompt to use on new conversations |
GOOGLE_API_KEY | See Custom Search JSON API documentation | |
GOOGLE_CSE_ID | See Custom Search JSON API documentation | |
MONGODB_URI | See Official Document | |
MONGODB_DB | chatui |
MongoDB database name |
NEXTAUTH_ENABLED | false |
Enable SSO authentication. set 'true' or 'false' |
NEXTAUTH_EMAIL_PATTERN | The email regex pattern granted access to chatbot-ui (ex [email protected] ) |
|
NEXTAUTH_URL | http://localhost:3000 |
NextAuth Settings. See Official Document |
NEXTAUTH_SECRET | NextAuth Settings. See Official Document | |
GITHUB_CLIENT_ID | GitHub OAuth Client ID for NextAuth | |
GITHUB_CLIENT_SECRET | GitHub OAuth Client Secret for NextAuth | |
GOOGLE_CLIENT_ID | Google OAuth Client ID for NextAuth | |
GOOGLE_CLIENT_SECRET | Google OAuth Client Secret for NextAuth | |
COGNITO_CLIENT_ID | Cognito App Client ID | |
COGNITO_CLIENT_SECRET | Cognito App Client Secret | |
COGNITO_ISSUER | Cognito Identity Provider Issuer | |
AZURE_AD_CLIENT_ID | Azure AD Application (client) ID (see: Quickstart AD) | |
AZURE_AD_TENANT_ID | Azure AD Directory (tenant) ID | |
AZURE_AD_CLIENT_SECRET | Azure AD Client secret value (Certificates & secrets > Client Secrets > New Client Secret > Value) | |
SUPPORT_EMAIL | Specify the support email address to show users in case of errors or issues are encountered while using the application. | |
PROMPT_SHARING_ENABLED | false |
Enable prompt sharing between users. Only admin users are allowed to modify public folders. Add admins by setting db collection field users.role to admin for each individual user. |
DEFAULT_USER_LIMIT_USD_MONTHLY | Requires API pricing to be configured. Set a default monthly limit on api consumption per user. Leave unset for unrestricted access |
If you do not provide an OpenAI API key with OPENAI_API_KEY
, users will have to provide their own key.
If you don't have an OpenAI API key, you can get one here.
In order to track the consumption of the OpenAI API in USD, it is necessary to configure the current pricing rates for the API. This can be accomplished by updating the llmPriceRate
collection in MongoDB and adjusting the values for promptPriceUSDPer1000
and completionPriceUSDPer1000
for each model.
Here is an example document for the gpt-3.5-turbo model:
{
modelId: "gpt-3.5-turbo",
promptPriceUSDPer1000: 0.0015,
completionPriceUSDPer1000: 0.002
}
To identify the model IDs available, you can refer to the /types/openai.ts
file.
By updating the pricing rates in this manner, you can ensure accurate tracking of API consumption and associated costs in USD.
In the process of initializing MongoDB on Docker, it is possible to configure the API rate pricing by utilizing environment variables. These variables should be appropriately named, taking into account the specific model and the corresponding prompt or completion price. The prescribed format for naming these variables is as follows: MODEL_PRICING_1000_${PROMPT || COMPLETION}_${MODEL_ID} = VALUE
For instance, let's consider an example that demonstrates the configuration for the gpt-3.5-turbo model:
MODEL_PRICING_1000_PROMPT_gpt-3.5-turbo=0.002
MODEL_PRICING_1000_COMPLETION_gpt-3.5-turbo=0.002
To set a monthly consumption limit for users, follow these steps:
- Set a general user monthly limit in USD by configuring the environment variable
DEFAULT_USER_LIMIT_USD_MONTHLY
. - Alternatively, you can set a specific limit for individual users by modifying their respective records in the database. Set the value of
users.monthlyUSDConsumptionLimit
to the desired amount.
Per-user limit takes precedence over the general limit.
You can add a ChatGPT compatible plugin to urls
field in plugins.json
.
You can control the tools you want to use with the environment variable PLUGINS_INTERNAL
.
- wikipedia_search
- google_search
- python_interpreter
Recommended for use with GPT-4
To enable python interpreter, you need to specify codeapi endpoint to PYTHON_INTERPRETER_BACKEND
in .env.local
and add python_interpreter
to PLUGINS_INTERNAL.
# ex.
PLUGINS_INTERNAL=wikipedia_search,google_search,python_interpreter
PYTHON_INTERPRETER_BACKEND=http://localhost:8080/api/run
- streaming response is not supported in vercel.
- plugin executing fails because of the timeout limit is too short in free plan.
If you have any questions, feel free to reach out to me on Twitter.