Skip to content

How to evaluate accuracy and speed of YOLOv4

Alexey edited this page Apr 27, 2020 · 3 revisions

How to evaluate accuracy and speed of YOLOv4

How to evaluate AP of YOLOv4 on the MS COCO evaluation server

  1. Set width=608 height=608 (or 512x512, or 416x416) in the [net] section of cfg/yolov4.cfg file https://github.com/AlexeyAB/darknet/blob/6f718c257815a984253346bba8fb7aa756c55090/cfg/yolov4.cfg#L8-L9
  2. Download and unzip test-dev2017 dataset from MS COCO server: http://images.cocodataset.org/zips/test2017.zip
  3. Download list of images for Detection taks and replace the paths with yours (to the unzipped images from test2017.zip): https://raw.githubusercontent.com/AlexeyAB/darknet/master/scripts/testdev2017.txt
  4. Download yolov4.weights file: https://drive.google.com/open?id=1cewMfusmPjYWbrnuJRuKhPMwRe_b9PaT
  5. Content of the file cfg/coco.data should be
classes= 80
train  = <replace with your path>/trainvalno5k.txt
valid = <replace with your path>/testdev2017.txt
names = data/coco.names
backup = backup
eval=coco
  1. Create /results/ folder near with ./darknet executable file
  2. Run validation: ./darknet detector valid cfg/coco.data cfg/yolov4.cfg yolov4.weights
  3. Rename the file /results/coco_results.json to detections_test-dev2017_yolov4_results.json and compress it to detections_test-dev2017_yolov4_results.zip
  4. Submit file detections_test-dev2017_yolov4_results.zip to the MS COCO evaluation server for the test-dev2019 (bbox) https://competitions.codalab.org/competitions/20794#participate

You will get such results (AP=0.435 and AP50=0.657) in the end of file View scoring output log

overall performance
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.435
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.657
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.473
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.267
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.467
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.533
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.342
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.549
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.580
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.403
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.617
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.713
Done (t=334.58s)

How to evaluate FPS of YOLOv4 on GPU

  1. Compile Darknet with GPU=1 CUDNN=1 CUDNN_HALF=1 OPENCV=1 in the Makefile (or use the same settings with Cmake)
  2. Download yolov4.weights file: https://drive.google.com/open?id=1cewMfusmPjYWbrnuJRuKhPMwRe_b9PaT
  3. Get any .avi/.mp4 video file (preferably not more than 1920x1080 to avoid bottlenecks in CPU performance)
  4. Run one of two commands and look at the AVG FPS:
  • include video_capturing + NMS + drawing_bboxes: ./darknet detector demo cfg/coco.data cfg/yolov4.cfg yolov4.weights test.mp4 -dont_show -ext_output
  • exclude video_capturing + NMS + drawing_bboxes: ./darknet detector demo cfg/coco.data cfg/yolov4.cfg yolov4.weights test.mp4 -benchmark

Accuracy and FPS on RTX 2070 (R) and Tesla V100 (V):


Result - paper: https://arxiv.org/abs/2004.10934 image

comparison


modern_gpus