AutoGen is a framework that enables development of LLM applications using multi-agents. AutoGen framework can be used with any model via API or locally within your own environment.
- Lesson 1: Multi-Agent Conversation and Stand-up Comedy
- Lesson 2: Sequential Chats and Customer Onboarding
- Lesson 3: Reflection and Blogpost Writing
- Lesson 4: Tool Use and Conversational Chess
- Lesson 5: Coding and Financial Analysis
- Lesson 6: Planning and Stock Report Generation
AI-agents-with-AutoGen/
├── 1 Multi-agent conversation and stand-up comedy
│ ├── L1_Multi-Agent_Conversation_and_Stand-up_Comedy.ipynb
│ ├── README.md
│ ├── requirements.txt
│ └── utils.py
├── 2 Sequential chats and Customer Onboarding
│ ├── L2_Sequential_Chats_and_Customer_Onboarding.ipynb
│ └── README.md
├── 3 Reflection and Blogpost Writing
│ ├── L3_Reflection_and_Blogpost_Writing.ipynb
│ └── README.md
├── 4 Tool Use and Conversational Chess
│ ├── L4_Tool_Use_and_Conversational_Chess.ipynb
│ └── README.md
├── 5 Coding and Financial Analysis
│ ├── L5_Coding_and_Financial_Analysis.ipynb
│ └── README.md
├── 6 Planning and Stock Report Generation
│ ├── L6-Planning_and_Stock_Report_Generation.ipynb
│ └── README.md
├── AI_agent_autogen.py
├── AI_agents_thesis
│ └── README.md
├── OpenAI_API
│ ├── GPT3-5-turbo.py
│ ├── GPT4.py
│ ├── README.md
│ ├── freecodecamp.py
│ ├── main.py
│ └── short_story.txt
├── README.md
├── coding
├── finetune_LLM
│ ├── README.md
│ └── sentiment_analysis.py
├── hugging-face
│ ├── GPT2.py
│ ├── GPTNeo.py
│ └── README.md
├── img
│ ├── conversations.png
│ ├── customer_onboarding_task.png
│ ├── intro.png
│ ├── nested chats.png
│ └── reflection.png
└── requirements.txt
pip install pyautogen
- define agents
- define chat
- initiate chat
- see the chat history, and also the cost
from autogen import ConversableAgent
llm_config={"model":"gpt-3.5-turbo"}
agent = ConversableAgent(
name='chatbot',
system_message='You are a chatbot and you are an expert financial advisor'
llm_config=llm_config,
human_input_mode='NEVER'
)
By setting the system message, we can define the behavior of the agent.
Summary methods:
- "reflection_with_llm"
summary_prompt, to instruct the llm on how to do the summary