Skip to content

Swarms is a modular framework that enables reliable and useful multi-agent collaboration at scale to automate real-world tasks.

License

Notifications You must be signed in to change notification settings

Agora-Lab-AI/swarms

 
 

Repository files navigation

Swarming banner icon

Swarms is a modular framework that enables reliable and useful multi-agent collaboration at scale to automate real-world tasks.

GitHub issues GitHub forks GitHub stars GitHub licenseGitHub star chartDependency Status Downloads

Share on Social Media

Join the Agora discordShare on Twitter Share on Facebook Share on LinkedIn

Share on Reddit Share on Hacker News Share on Pinterest Share on WhatsApp

Vision

At Swarms, we're transforming the landscape of AI from siloed AI agents to a unified 'swarm' of intelligence. Through relentless iteration and the power of collective insight from our 1500+ Agora researchers, we're developing a groundbreaking framework for AI collaboration. Our mission is to catalyze a paradigm shift, advancing Humanity with the power of unified autonomous AI agent swarms.


🤝 Schedule a 1-on-1 Session

Book a 1-on-1 Session with Kye, the Creator, to discuss any issues, provide feedback, or explore how we can improve Swarms for you.


Installation

pip3 install --upgrade swarms


Usage

We have a small gallery of examples to run here, for more check out the docs to build your own agent and or swarms!

Flow Example

  • Reliable Structure that provides LLMS autonomy
  • Extremely Customizeable with stopping conditions, interactivity, dynamical temperature, loop intervals, and so much more
  • Enterprise Grade + Production Grade: Flow is designed and optimized for automating real-world tasks at scale!
from swarms.models import OpenAIChat
from swarms.structs import Flow

api_key = ""

# Initialize the language model, this model can be swapped out with Anthropic, ETC, Huggingface Models like Mistral, ETC
llm = OpenAIChat(
    # model_name="gpt-4"
    openai_api_key=api_key,
    temperature=0.5,
    # max_tokens=100,
)

## Initialize the workflow
flow = Flow(
    llm=llm,
    max_loops=2,
    dashboard=True,
    # stopping_condition=None,  # You can define a stopping condition as needed.
    # loop_interval=1,
    # retry_attempts=3,
    # retry_interval=1,
    # interactive=False,  # Set to 'True' for interactive mode.
    # dynamic_temperature=False,  # Set to 'True' for dynamic temperature handling.
)

# out = flow.load_state("flow_state.json")
# temp = flow.dynamic_temperature()
# filter = flow.add_response_filter("Trump")
out = flow.run("Generate a 10,000 word blog on health and wellness.")
# out = flow.validate_response(out)
# out = flow.analyze_feedback(out)
# out = flow.print_history_and_memory()
# # out = flow.save_state("flow_state.json")
# print(out)


SequentialWorkflow

  • A Sequential swarm of autonomous agents where each agent's outputs are fed into the next agent
  • Save and Restore Workflow states!
  • Integrate Flow's with various LLMs and Multi-Modality Models
from swarms.models import OpenAIChat
from swarms.structs import Flow
from swarms.structs.sequential_workflow import SequentialWorkflow

# Example usage
api_key = (
    ""  # Your actual API key here
)

# Initialize the language flow
llm = OpenAIChat(
    openai_api_key=api_key,
    temperature=0.5,
    max_tokens=3000,
)

# Initialize the Flow with the language flow
flow1 = Flow(llm=llm, max_loops=1, dashboard=False)

# Create another Flow for a different task
flow2 = Flow(llm=llm, max_loops=1, dashboard=False)

# Create the workflow
workflow = SequentialWorkflow(max_loops=1)

# Add tasks to the workflow
workflow.add("Generate a 10,000 word blog on health and wellness.", flow1)

# Suppose the next task takes the output of the first task as input
workflow.add("Summarize the generated blog", flow2)

# Run the workflow
workflow.run()

# Output the results
for task in workflow.tasks:
    print(f"Task: {task.description}, Result: {task.result}")

Documentation

Contribute

Community

License

MIT

About

Swarms is a modular framework that enables reliable and useful multi-agent collaboration at scale to automate real-world tasks.

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.7%
  • Other 0.3%