行吧行吧,我知道这个项目真的很不好用~
那么,来看看 xyolo 吧!
xyolo 是对 tf2-keras-yolo3的重构和封装,旨在降低使用门槛,帮助实现快速开发。
几行Python代码即可训练自己的目标检测模型或者调用模型进行检测哦~你不试试吗?
这是对qqwweee/keras-yolo3的fork和修改,目的是使它支持TensorFlow 2.2。
主要修改内容如下:
- 以tf.keras为主导,替换掉独立的keras库
- 修改部分基于TensorFlow 1.x版本的接口和逻辑,使项目支持TensorFlow 2.2
- 修改原项目命令行参数错误
2020.6.29 更新:
- 在TensorFlow 2.2下测试兼容性,运行正常
- 之前有朋友反映无法通过
train.py
完成自定义数据集的训练,我在TensorFlow 2.2下做了测试,一切正常 - 使用
tf.function
优化模型性能
关于训练:
亲测TensorFlow 2.2下训练自定义数据集是没有问题的,训练不成功的同学请尝试如下方法:
- 升级TensorFlow版本为2.2
- 仔细阅读原
README.MD
中关于train.py
部分的表述,在训练前需要先准备数据集、处理数据格式以及按实际情况修改train.py
中的参数。如果没有做这些工作的话,出现错误很正常。
TODO:
- 编写一个使用
tf2-keras-yolo3
训练自己的数据集的详细教程。 - 提取各脚本中常用配置参数到统一文件
更多信息请访问 深度学习下的目标检测算法——TensorFlow 2.0下的YOLOv3实践 (https://blog.csdn.net/aaronjny/article/details/103658254)
下附qqwweee/keras-yolo3的README.
This is a fork and modification of qqwweee / keras-yolo3, in order to make it support TensorFlow 2.2.
Attached is the README of qqwweee / keras-yolo3.
A Keras implementation of YOLOv3 (Tensorflow backend) inspired by allanzelener/YAD2K.
- Download YOLOv3 weights from YOLO website.
- Convert the Darknet YOLO model to a Keras model.
- Run YOLO detection.
wget https://pjreddie.com/media/files/yolov3.weights
python convert.py yolov3.cfg yolov3.weights model_data/yolo.h5
python yolo_video.py [OPTIONS...] --image, for image detection mode, OR
python yolo_video.py [video_path] [output_path (optional)]
For Tiny YOLOv3, just do in a similar way, just specify model path and anchor path with --model model_file
and --anchors anchor_file
.
Use --help to see usage of yolo_video.py:
usage: yolo_video.py [-h] [--model MODEL] [--anchors ANCHORS]
[--classes CLASSES] [--gpu_num GPU_NUM] [--image]
[--input] [--output]
positional arguments:
--input Video input path
--output Video output path
optional arguments:
-h, --help show this help message and exit
--model MODEL path to model weight file, default model_data/yolo.h5
--anchors ANCHORS path to anchor definitions, default
model_data/yolo_anchors.txt
--classes CLASSES path to class definitions, default
model_data/coco_classes.txt
--gpu_num GPU_NUM Number of GPU to use, default 1
--image Image detection mode, will ignore all positional arguments
- MultiGPU usage: use
--gpu_num N
to use N GPUs. It is passed to the Keras multi_gpu_model().
-
Generate your own annotation file and class names file.
One row for one image;
Row format:image_file_path box1 box2 ... boxN
;
Box format:x_min,y_min,x_max,y_max,class_id
(no space).
For VOC dataset, trypython voc_annotation.py
Here is an example:path/to/img1.jpg 50,100,150,200,0 30,50,200,120,3 path/to/img2.jpg 120,300,250,600,2 ...
-
Make sure you have run
python convert.py -w yolov3.cfg yolov3.weights model_data/yolo_weights.h5
The file model_data/yolo_weights.h5 is used to load pretrained weights. -
Modify train.py and start training.
python train.py
Use your trained weights or checkpoint weights with command line option--model model_file
when using yolo_video.py Remember to modify class path or anchor path, with--classes class_file
and--anchors anchor_file
.
If you want to use original pretrained weights for YOLOv3:
1. wget https://pjreddie.com/media/files/darknet53.conv.74
2. rename it as darknet53.weights
3. python convert.py -w darknet53.cfg darknet53.weights model_data/darknet53_weights.h5
4. use model_data/darknet53_weights.h5 in train.py
-
The test environment is
- Python 3.5.2
- Keras 2.1.5
- tensorflow 1.6.0
-
Default anchors are used. If you use your own anchors, probably some changes are needed.
-
The inference result is not totally the same as Darknet but the difference is small.
-
The speed is slower than Darknet. Replacing PIL with opencv may help a little.
-
Always load pretrained weights and freeze layers in the first stage of training. Or try Darknet training. It's OK if there is a mismatch warning.
-
The training strategy is for reference only. Adjust it according to your dataset and your goal. And add further strategy if needed.
-
For speeding up the training process with frozen layers train_bottleneck.py can be used. It will compute the bottleneck features of the frozen model first and then only trains the last layers. This makes training on CPU possible in a reasonable time. See this for more information on bottleneck features.