Skip to content

Commit

Permalink
Cleanup MR so its a little more professional
Browse files Browse the repository at this point in the history
  • Loading branch information
tim-win committed Sep 1, 2024
1 parent 4041949 commit b466180
Show file tree
Hide file tree
Showing 11 changed files with 116 additions and 57 deletions.
76 changes: 43 additions & 33 deletions Dockerfile
Original file line number Diff line number Diff line change
@@ -1,53 +1,63 @@
FROM nvidia/cuda:12.1.0-devel-ubuntu22.04 AS DEPENDENCIES
# Base image with CUDA support
FROM nvidia/cuda:12.1.0-devel-ubuntu22.04 AS base

ARG MODEL="yolo_world_l_dual_vlpan_l2norm_2e-3_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py"
ARG WEIGHT="yolo_world_l_clip_base_dual_vlpan_2e-3adamw_32xb16_100e_o365_goldg_train_pretrained-0e566235.pth"

ENV FORCE_CUDA="1"
ENV MMCV_WITH_OPS=1
# Set environment variables
ENV FORCE_CUDA="1" \
MMCV_WITH_OPS=1 \
DEBIAN_FRONTEND=noninteractive

# Install system dependencies
RUN apt-get update && apt-get install -y --no-install-recommends \
python3-pip \
python3-pip \
libgl1-mesa-glx \
libsm6 \
libxext6 \
libxrender-dev \
libglib2.0-0 \
git \
python3-dev \
python3-wheel \
curl

# Uncomment the following if you want to download a specific set of weights
# RUN mkdir weights
# RUN curl -o weights/$WEIGHT -L https://huggingface.co/wondervictor/YOLO-World/resolve/main/$WEIGHT

RUN pip3 install --upgrade pip \
&& pip3 install wheel \
&& pip3 install torch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 --index-url https://download.pytorch.org/whl/cu121 \
&& pip3 install \
libsm6 \
libxext6 \
libxrender-dev \
libglib2.0-0 \
git \
python3-dev \
python3-wheel \
curl \
&& rm -rf /var/lib/apt/lists/*

# Install Python dependencies
FROM base AS python_deps

RUN pip3 install --upgrade pip wheel \
&& pip3 install --no-cache-dir torch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 --index-url https://download.pytorch.org/whl/cu121 \
&& pip3 install --no-cache-dir \
gradio==4.16.0 \
opencv-python==4.9.0.80 \
supervision \
mmengine==0.10.4 \
setuptools \
openmim \
onnx \
onnxsim \
&& mim install mmcv==2.1.0 \
&& mim install mmdet==3.3.0 \
&& pip install git+https://github.com/onuralpszr/mmyolo.git
&& pip3 install --no-cache-dir git+https://github.com/onuralpszr/mmyolo.git

# Clone and install YOLO-World
FROM python_deps AS yolo_world

FROM DEPENDENCIES as INSTALLING_YOLO
RUN git clone --recursive https://github.com/tim-win/YOLO-World /yolo/
#COPY . /yolo
RUN git clone --recursive https://github.com/wondervictor/YOLO-World /yolo/
WORKDIR /yolo

RUN pip3 install -e .[demo]

RUN pip3 install onnx onnxsim
# Final stage
FROM yolo_world AS final

ARG MODEL="yolo_world_l_dual_vlpan_l2norm_2e-3_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py"
ARG WEIGHT="yolo_world_l_clip_base_dual_vlpan_2e-3adamw_32xb16_100e_o365_goldg_train_pretrained-0e566235.pth"

FROM INSTALLING_YOLO as OK_THIS_PART_IS_TRICKY_DONT_HATE
# Create weights directory and set permissions
RUN mkdir /weights/ \
&& chmod a+rwx /yolo/configs/*/*

RUN mkdir /weights/
RUN chmod a+rwx /yolo/configs/*/*
# Optionally download weights (commented out by default)
# RUN curl -o /weights/$WEIGHT -L https://huggingface.co/wondervictor/YOLO-World/resolve/main/$WEIGHT

CMD [ "bash" ]
# Set the default command
CMD ["bash"]
70 changes: 57 additions & 13 deletions build_and_run.sh
Original file line number Diff line number Diff line change
@@ -1,8 +1,33 @@
#!/usr/bin/env bash

# Exit immediately if a command exits with a non-zero status.
set -e

MODEL_DIR="../models/models-yoloworld"
# Set MODEL_DIR if not already set in the environment
: "${MODEL_DIR:="../models/models-yoloworld"}"

# DocString for the script
: '
This script builds and runs a Docker container for YOLO-World demos.
It supports various pre-trained models and configurations for object detection and segmentation.
Usage:
./build_and_run.sh <model-key>
Environment Variables:
MODEL_DIR: Path to the directory containing model weights (default: "../models/models-yoloworld")
Arguments:
<model-key>: Key for the desired model configuration (see available keys below)
Available model keys:
seg-l, seg-l-seghead, seg-m, seg-m-seghead,
pretrain-l-clip-800ft, pretrain-l-clip, pretrain-l-1280ft, pretrain-l,
pretrain-m-1280ft, pretrain-m, pretrain-s-1280ft, pretrain-s,
pretrain-x-cc3mlite, pretrain-x-1280ft
'

# Define associative array for model configurations
declare -A models
models["seg-l"]="yolo_world_v2_seg_l_vlpan_bn_2e-4_80e_8gpus_seghead_finetune_lvis.py yolo_world_seg_l_dual_vlpan_2e-4_80e_8gpus_allmodules_finetune_lvis-8c58c916.pth"
models["seg-l-seghead"]="yolo_world_v2_seg_l_vlpan_bn_2e-4_80e_8gpus_seghead_finetune_lvis.py yolo_world_seg_l_dual_vlpan_2e-4_80e_8gpus_seghead_finetune_lvis-5a642d30.pth"
Expand All @@ -19,33 +44,52 @@ models["pretrain-s"]="yolo_world_v2_s_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_
models["pretrain-x-cc3mlite"]="yolo_world_v2_x_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_cc3mlite_train_lvis_minival.py yolo_world_v2_x_obj365v1_goldg_cc3mlite_pretrain-8698fbfa.pth"
models["pretrain-x-1280ft"]="yolo_world_v2_x_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_train_1280ft_lvis_minival.py yolo_world_v2_x_obj365v1_goldg_cc3mlite_pretrain_1280ft-14996a36.pth"

if [ $# -eq 0 ]; then
# Function to display usage information
show_usage() {
echo "Usage: $0 <model-key>"
echo "Available model keys:"
for key in "${!models[@]}"; do
echo " $key"
done
echo "Usage: $0 <model-key>"
}

# Check if a model key is provided
if [ $# -eq 0 ]; then
show_usage
exit 1
fi

model_key=$1

# Validate the model key
if [ -z "${models[$model_key]}" ]; then
echo "Invalid model key. Available keys are:"
for key in "${!models[@]}"; do
echo " $key"
done
echo "Invalid model key."
show_usage
exit 1
fi

read MODEL WEIGHT <<< "${models[$model_key]}"
# Extract model and weight information
read -r MODEL WEIGHT <<< "${models[$model_key]}"

# Set configuration directory and demo file based on model type
config_dir="configs/pretrain"
demo_file=demo/gradio_demo.py
demo_file="demo/gradio_demo.py"
if [[ $model_key == seg-* ]]; then
export config_dir="configs/segmentation"
export demo_file="demo/segmentation_demo.py"
config_dir="configs/segmentation"
demo_file="demo/segmentation_demo.py"
fi

# docker build -f ./Dockerfile --build-arg="MODEL=$MODEL" --build-arg="WEIGHT=$WEIGHT" -t "yolo-demo:latest" . && \
docker run -it -v "$(readlink -f $MODEL_DIR):/weights/" --runtime nvidia -p 8080:8080 "yolo-demo:latest" python3 $demo_file "$config_dir/$MODEL" "/weights/$WEIGHT"
# Build Docker image and run container
echo "Building Docker image..."
docker build -f ./Dockerfile --no-cache \
--build-arg="MODEL=$MODEL" \
--build-arg="WEIGHT=$WEIGHT" \
-t "yolo-demo:latest" .

echo "Running Docker container..."
docker run -it \
-v "$(readlink -f "$MODEL_DIR"):/weights/" \
--runtime nvidia \
-p 8080:8080 \
"yolo-demo:latest" \
python3 "$demo_file" "$config_dir/$MODEL" "/weights/$WEIGHT"
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,6 @@
weight_decay = 0.05
train_batch_size_per_gpu = 16
load_from = 'pretrained_models/yolo_world_m_clip_t2i_bn_2e-3adamw_32xb16-100e_obj365v1_goldg_train-c6237d5b.pth'
# text_model_name = '../pretrained_models/clip-vit-base-patch32-projection'
text_model_name = 'openai/clip-vit-base-patch32'
persistent_workers = False

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,6 @@
weight_decay = 0.025
train_batch_size_per_gpu = 4
load_from = "pretrained_models/yolo_world_v2_l_obj365v1_goldg_pretrain-a82b1fe3.pth"
# text_model_name = '../pretrained_models/clip-vit-base-patch32-projection'
text_model_name = 'openai/clip-vit-base-patch32'
img_scale = (1280, 1280)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,6 @@
base_lr = 2e-3
weight_decay = 0.05 / 2
train_batch_size_per_gpu = 16
# text_model_name = '../pretrained_models/clip-vit-base-patch32-projection'
text_model_name = 'openai/clip-vit-base-patch32'
# model settings
model = dict(
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,6 @@
base_lr = 2e-3
weight_decay = 0.05 / 2
train_batch_size_per_gpu = 16
# text_model_name = '../pretrained_models/clip-vit-base-patch32-projection'
text_model_name = 'openai/clip-vit-base-patch32'
# model settings
model = dict(
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,6 @@
base_lr = 2e-3
weight_decay = 0.05 / 2
train_batch_size_per_gpu = 16
# text_model_name = '../pretrained_models/clip-vit-base-patch32-projection'
text_model_name = 'openai/clip-vit-base-patch32'
# model settings
model = dict(
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,6 @@
base_lr = 2e-3
weight_decay = 0.05 / 2
train_batch_size_per_gpu = 16
# text_model_name = '../pretrained_models/clip-vit-base-patch32-projection'
text_model_name = 'openai/clip-vit-base-patch32'
img_scale = (1280, 1280)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,6 @@
base_lr = 2e-3
weight_decay = 0.05 / 2
train_batch_size_per_gpu = 16
# text_model_name = '../pretrained_models/clip-vit-base-patch32-projection'
text_model_name = 'openai/clip-vit-base-patch32'
# model settings
model = dict(
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,6 @@
weight_decay = 0.05
train_batch_size_per_gpu = 8
load_from = 'pretrained_models/yolo_world_l_clip_t2i_bn_2e-3adamw_32xb16-100e_obj365v1_goldg_cc3mlite_train-ca93cd1f.pth'
# text_model_name = '../pretrained_models/clip-vit-base-patch32-projection'
text_model_name = 'openai/clip-vit-base-patch32'
persistent_workers = False

Expand Down
19 changes: 16 additions & 3 deletions demo/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -19,11 +19,24 @@ pip install gradio==4.16.0
python demo/demo.py path/to/config path/to/weights
```

Additionaly, you can use a Dockerfile to build an image with gradio. As a prerequisite, make sure you have respective drivers installed alongside [nvidia-container-runtime](https://stackoverflow.com/questions/59691207/docker-build-with-nvidia-runtime). Replace MODEL_NAME and WEIGHT_NAME with the respective values or ommit this and use default values from the [Dockerfile](Dockerfile#3)
Additionally, you can use our Docker build system for an easier setup:

```bash
docker build --build-arg="MODEL=MODEL_NAME" --build-arg="WEIGHT=WEIGHT_NAME" -t yolo_demo .
docker run --runtime nvidia -p 8080:8080
./build_and_run.sh <model-key>
```

Available model keys include:
- seg-l, seg-l-seghead, seg-m, seg-m-seghead
- pretrain-l-clip-800ft, pretrain-l-clip, pretrain-l-1280ft, pretrain-l
- pretrain-m-1280ft, pretrain-m, pretrain-s-1280ft, pretrain-s
- pretrain-x-cc3mlite, pretrain-x-1280ft

This script will build the Docker image and run the container with the specified model configuration. The Gradio interface will be accessible at `http://localhost:8080`.

You can also customize the model weights directory by setting the `MODEL_DIR` environment variable:

```bash
MODEL_DIR=/path/to/your/weights ./build_and_run.sh <model-key>
```

#### Image Demo
Expand Down

0 comments on commit b466180

Please sign in to comment.