Skip to content

Commit

Permalink
Update README.md
Browse files Browse the repository at this point in the history
  • Loading branch information
adamcc authored Apr 20, 2021
1 parent 21f6329 commit 67ad4d5
Showing 1 changed file with 11 additions and 0 deletions.
11 changes: 11 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -109,6 +109,17 @@ All contributions are welcome; please read the [Guidelines for contributing](htt

We also have a [Code of Conduct](https://github.com/ACCLAB/dabestr/blob/master/CODE_OF_CONDUCT.md) to foster an inclusive and productive space.

### A wish list for new features
Currently, DABEST offers functions to handle data traditionally analyzed with Student’s paired and unpaired t-tests. It also offers plots for multiplexed versions of these, and the estimation counterpart to a 1-way analysis of variance (ANOVA), the shared-control design. While these five functions execute a large fraction of common biomedical data analyses, there remain three others: 2-way data, time-series group data, and proportional data. We aim to add these new functions to both the R and Python libraries.

● In many experiments, four groups are investigate to isolate an interaction, for example: a genotype × drug effect. Here, wild-type and mutant animals are each subjected to drug or sham treatments; the data are traditionally analysed with a 2×2 ANOVA. We have received requests by email, Twitter, and GitHub to implement an estimation counterpart to the 2-way ANOVA. To do this, we will implement ∆∆ plots, in which the difference of means (∆) of two groups is subtracted from a second two-group ∆.

● Currently, DABEST can analyse multiple paired data in a single plot, and multiple groups with a common, shared control. However, a common design in biomedical science is to follow the same group of subjects over multiple, successive time points. An estimation plot for this would combine elements of the two other designs, and could be used in place of a repeated-measures ANOVA.

● We have observed that proportional data are often analyzed in neuroscience and other areas of biomedical research. However, compared to other data types, the charts are frequently impoverished: often, they omit error bars, sample sizes, and even P values—let alone effect sizes. We would like DABEST to feature proportion charts, with error bars and a curve for the distribution of the proportional differences.

We encourage contributions for the above features.


## dabestr in other languages

Expand Down

0 comments on commit 67ad4d5

Please sign in to comment.